DOI:

https://doi.org/10.14483/23448393.21340

Published:

2024-01-17

Issue:

Vol. 29 No. 1 (2024): January-April

Section:

Electrical, Electronic and Telecommunications Engineering

Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids

Optimización estocástica, entera mixta y de flujo por ramas para la integración optima de bancos de capacitores de paso fijo en redes de distribución de energía

Authors

Keywords:

Stochastic mixed-integer model, branch flow optimization, fixed-step capacitor banks, electrical distribution network, global optimum (en).

Keywords:

modelo estocástico de enteros mixtos, optimización de flujo de ramas, bancos de capacitores de paso fijo, red de distribución eléctrica, óptimo global (es).

Downloads

Abstract (en)

Context: The use of capacitor banks is the most common and preferred solution for reducing power loss in electrical distribution networks, given their cost-effectiveness and low maintenance requirements. However, achieving their optimal integration in terms of location and size is a challenging problem.
 Method: This paper proposes a stochastic mixed-integer convex model based on a branch flow optimization model, which incorporates three different load-generation conditions, in order to address the stochastic nature of distribution systems.
Results: The simulation results indicated that the proposed stochastic mixed-integer branch flow (SMIBF) model provides the best solution for all test feeders analyzed, reducing the objective function value by 39.81%, 35.29%, and 56.31% for the modified 33-, 69-, and 85-node test feeders, respectively.
Conclusions: An SMIBF model was developed to optimally integrate fixed-step capacitor banks into electrical distribution grids. This model considered the stochastic nature of distribution systems under multiple operating conditions and ensured that the global optimum could be found.

Abstract (es)

Contexto: El uso de bancos de capacitores es la solución más común y preferida para reducir la pérdida de energía en redes de distribución eléctrica, dados, su rentabilidad y bajos requisitos de mantenimiento. Sin embargo, lograr su integración óptima en términos de ubicación y tamaño es un problema desafiante.
Métodos: Este artículo propone un modelo convexo estocástico entero-mixto basado en un modelo de optimización de flujo de ramas, que incorpora tres diferentes condiciones de generación de carga, para abordar la naturaleza estocástica de los sistemas de distribución.
Resultados: Los resultados de la simulación indicaron que el modelo SMIBF propuesto proporcionó la mejor solución para todos los sistemas de prueba analizados, reduciendo la función objetivo en comparación con el caso de referencia en un 39.81 %, 35.29 % y 56.31% para los alimentadores de prueba modificados de 33, 69 y 85 nodos, respectivamente.
Conclusiones: Se desarrolló un modelo SMIBF para integrar de manera óptima bancos de condensadores de paso fijo en redes de distribución eléctrica. Este modelo tuvo en cuenta la naturaleza estocástica de los sistemas de distribución bajo múltiples condiciones de operación y garantizó el logro del óptimo global.

Author Biography

Walter Julián Gil-González, Technological University of Pereira

Universidad Tecnológica de Pereira

References

M. I. M. Ridzuan, N. F. M. Fauzi, N. N. R. Roslan, and N. M. Saad, “Urban and rural medium voltage networks reliability assessment,” SN Appl. Sci., vol. 2, no. 2, Jan. 2020. https://doi.org/10.1007/s42452-019-1612-z

L. C. Kien, T. T. Nguyen, T. D. Pham, and T. T. Nguyen, “Cost reduction for energy loss and capacitor investment in radial distribution networks applying novel algorithms,” Neural Comput. Appl., vol. 33, no. 22, pp. 15 495–15 522, Jun. 2021. SpringerScienceandBusinessMedia{LLC}

A. Paz-Rodriguez, J. F. Castro-Ordonez, O. D. Montoya, and D. A. Giral-Ramirez, “Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm,” Appl. Sci., vol. 11, no. 10, p. 4418, May 2021. https://doi.org/10.3390/app11104418

A. Aguila, L. Ortiz, R. Orizondo, and G. Lopez, “Optimal location and dimensioning of capacitors in microgrids using a multicriteria decision algorithm,” Heliyon, vol. 7, no. 9, p. e08061, Sep 2021. https://doi.org/10.1016/j.heliyon.2021.e08061

E. P. Madruga and L. N. Canha, “Allocation and integrated configuration of capacitor banks and voltage regulators considering multi-objective variables in smart grid distribution system,” in 2010 9th IEEE/IAS International Conference on Industry Applications - INDUSCON 2010, 2010, pp. 1–6. https://doi.org/10.1109/INDUSCON.2010.5740055

L. A. G. Pareja, J. M. L. Lezama, and O. G. Carmona, “Optimal placement of capacitors, voltage regulators, and distributed generators in electric power distribution systems,” Ingenieria, vol. 25, no. 3, pp. 334–354, Oct 2020. https://doi.org/10.14483/23448393.16925

S. Mishra, D. Das, and S. Paul, “A comprehensive review on power distribution network reconfiguration,” Energy Syst., vol. 8, no. 2, pp. 227–284, Mar 2016. https://doi.org/10.1007/s12667-016-0195-7

S. Dhivya and R. Arul, “Demand side management studies on distributed energy resources: A survey,” TESEA Trans., vol. 2, no. 1, pp. 17–31, Jul 2021. https://doi.org/10.32397/tesea.vol2.n1.2

R. Sirjani and A. R. Jordehi, “Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review,” Renew. Sust. Energ. Rev., vol. 77, pp. 688–694, Sep 2017. https://doi.org/10.1016/j.rser.2017.04.035

V. Tamilselvan, T. Jayabarathi, T. Raghunathan, and X.-S. Yang, “Optimal capacitor placement in radial distribution systems using flower pollination algorithm,” Alex. Eng. J., vol. 57, no. 4, pp. 2775–2786, Dec 2018. https://doi.org/10.1016/j.aej.2018.01.004

A. Valencia, R. A. Hincapie, and R. A. Gallego, “Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium-low voltage distribution networks,” J. Energy Storage, vol. 34, p. 102158, Feb 2021. https://doi.org/10.1016/j.est.2020.102158

S. Griot and A. Moreau, “Vacuum circuit breaker’s electrical life for shunt capacitor switching,” in 24th ISDEIV 2010, 2010, pp. 194–197. https://doi.org/10.1109/DEIV.2010.5625750

R. M. A. Velasquez and J. V. M. Lara, “Reliability, availability and maintainability study for failure analysis in series capacitor bank,” Eng. Fail. Anal., vol. 86, pp. 158–167, Apr 2018. https://doi.org/10.1016/j.engfailanal.2018.01.008

O. D. Montoya, W. Gil-Gonzalez, and A. Garces, “On the conic convex approximation to locate and size fixed-step capacitor banks in distribution networks,” Computation, vol. 10, no. 2, p. 32, 2022. https://doi.org/10.3390/computation10020032

W. Gil-Gonzalez, O. D. Montoya, A. Rajagopalan, L. F. Grisales-Norena, and J. C. Hernandez, “Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm,” Energies, vol. 13, no. 18, p. 4914, Sep 2020. https://doi.org/10.3390/en13184914

F. E. Riano, J. F. Cruz, O. D. Montoya, H. R. Chamorro, and L. Alvarado-Barrios, “Reduction of losses and operating costs in distribution networks using a genetic algorithm and mathematical optimization,” Electronics, vol. 10, no. 4, p. 419, Feb 2021. https://doi.org/10.3390/electronics10040419

I. P. Abril, “Capacitors placement in distribution systems with nonlinear load by using the variables’ inclusion and interchange algorithm,” DYNA, vol. 88, no. 217, pp. 13–22, May 2021. https://doi.org/10.15446/dyna.v88n217.91145

O. D. Montoya, W. Gil-Gonzalez, and J. C. Hernandez, “Efficient integration of fixed-step capacitor banks and D-STATCOMs in radial and meshed distribution networks considering daily operation curves,” Energies, vol. 16, no. 8, p. 3532, 2023. https://doi.org/10.3390/en16083532

Y. Ogita and H. Mori, “Parallel dual tabu search for capacitor placement in smart grids,” Procedia Comput. Sci., vol. 12, pp. 307–313, 2012. https://doi.org/10.1016/j.procs.2012.09.076

A. A. El-Fergany and A. Y. Abdelaziz, “Capacitor placement for net saving maximization and system stability enhancement in distribution networks using artificial bee colony-based approach,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 235–243, 2014. https://doi.org/10.1016/j.ijepes.2013.07.015

K. Prakash and M. Sydulu, “Particle swarm optimization based capacitor placement on radial distribution systems,” in 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1–5. https://doi.org/10.1109/PES.2007.386149

A. Augugliaro, L. Dusonchet, S. Favuzza, M. G. Ippolito, S. Mangione, and E. R. Sanseverino, “A modified genetic algorithm for optimal allocation of capacitor banks in MV distribution networks,” Intell. Ind. Syst., vol. 1, no. 3, pp. 201–212, Sep 2015. https://doi.org/10.1007/s40903-015-0019-4

K. Devabalaji, T. Yuvaraj, and K. Ravi, “An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm,” Ain Shams Eng. J., vol. 9, no. 4, pp. 589–597, Dec 2018. https://doi.org/10.1016/j.asej.2016.04.005

R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim., vol. 41, pp. 853–862, 2010. https://doi.org/10.1007/s00158-009-0460-7

D. Jones, M. Tamiz et al., Practical goal programming. Springer, 2010, vol. 141. https://doi.org/10.1007/978-1-4419-5771-9

S. Dutta and K. N. Das, “A survey on pareto-based eas to solve multi-objective optimization problems,” in Soft Computing for Problem Solving. Springer Singapore, 2019, pp. 807–820. https://doi.org/10.1007/978-981-13-1595-4_64

M. T. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimization: fundamentals and evolutionary methods,” Nat. Comput., vol. 17, pp. 585–609, 2018. https://doi.org/10.1007/s11047-018-9685-y

L. Zhihuan, L. Yinhong, and D. Xianzhong, “Non-dominated sorting genetic algorithm-ii for robust multi-objective optimal reactive power dispatch,” IET Gener. Transm. Distrib., vol. 4, no. 9, pp. 1000–1008, 2010. https://doi.org/10.1049/iet-gtd.2010.0105

S. Özdemir, B. A. Attea, and Ö. A. Khalil, “Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks,” Wirel. Pers. Commun., vol. 71, pp. 195–215, 2013. https://doi.org/10.1007/s11277-012-0811-3

J. B. Chagas and M. Wagner, “A weighted-sum method for solving the bi-objective traveling thief problem,” Comput Oper Res, vol. 138, p. 105560, 2022. https://doi.org/10.1016/j.cor.2021.105560

P. Yu, C. Wan, M. Sun, Y. Zhou, and Y. Song, “Distributed voltage control of active distribution networks with global sensitivity,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4214–4228, 2022. https://doi.org/10.1109/TPWRS.2022.3153954

M. Farivar and S. H. Low, “Branch flow model: relaxations and convexification—part i,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2554–2564, Aug 2013. https://doi.org/10.1109/tpwrs.2013.2255317

B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro, “The sample average approximation method applied to stochastic routing problems: a computational study,” Comput Optim Appl, vol. 24, pp. 289–333, 2003. https://doi.org/10.1023/A:1021814225969

W. Gil-González, A. Garces, O. D. Montoya, and J. C. Hernández, “A mixed-integer convex model for the optimal placement and sizing of distributed generators in power distribution networks,” Appl. Sci., vol. 11, no. 2, p. 627, 2021. https://doi.org/10.3390/app11020627

O. D. Montoya, W. Gil-González, and L. Grisales-Noreña, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Eng. J., vol. 11, no. 2, pp. 409–418, 2020. https://doi.org/10.1016/j.asej.2019.08.011

O. D. Montoya, L. F. Grisales-Noreña, L. Alvarado-Barrios, A. Arias-Londoño, and C. Álvarez-Arroyo, “Efficient reduction in the annual investment costs in AC distribution networks via optimal integration of solar PV sources using the newton metaheuristic algorithm,” Appl. Sci., vol. 11, no. 23, p. 11525, 2021. https://doi.org/10.3390/app112311525

W. Gil-González, “Optimal placement and sizing of d-statcoms in electrical distribution networks using a stochastic mixed-integer convex model,” Electronics, vol. 12, no. 7, p. 1565, 2023. https://doi.org/10.3390/electronics12071565

M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” Mar 2014. http://cvxr.com/

H. A. Taha, M. H. Alham, and H. K. M. Youssef, “Multi-objective optimization for optimal allocation and coordination of wind and solar dgs, besss and capacitors in presence of demand response,” IEEE Access, vol. 10, pp. 16 225–16 241, 2022. https://doi.org/10.1109/ACCESS.2022.3149135

L. H. Macedo, G. Muñoz-Delgado, J. Contreras, and R. Romero, “Optimal service restoration in active distribution networks considering microgrid formation and voltage control devices,” IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 5758–5771, 2021. https://doi.org/10.1109/TIA.2021.3116559

How to Cite

APA

Gil-González, W. J., Herrera-Orozco, A. R., and Molina-Cabrera, A. (2024). Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids . Ingeniería, 29(1), e21340. https://doi.org/10.14483/23448393.21340

ACM

[1]
Gil-González, W.J. et al. 2024. Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids . Ingeniería. 29, 1 (Jan. 2024), e21340. DOI:https://doi.org/10.14483/23448393.21340.

ACS

(1)
Gil-González, W. J.; Herrera-Orozco, A. R.; Molina-Cabrera, A. Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids . Ing. 2024, 29, e21340.

ABNT

GIL-GONZÁLEZ, Walter Julián; HERRERA-OROZCO, Andrés Ricardo; MOLINA-CABRERA, Alexander. Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids . Ingeniería, [S. l.], v. 29, n. 1, p. e21340, 2024. DOI: 10.14483/23448393.21340. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/21340. Acesso em: 30 apr. 2024.

Chicago

Gil-González, Walter Julián, Andrés Ricardo Herrera-Orozco, and Alexander Molina-Cabrera. 2024. “Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids ”. Ingeniería 29 (1):e21340. https://doi.org/10.14483/23448393.21340.

Harvard

Gil-González, W. J., Herrera-Orozco, A. R. and Molina-Cabrera, A. (2024) “Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids ”, Ingeniería, 29(1), p. e21340. doi: 10.14483/23448393.21340.

IEEE

[1]
W. J. Gil-González, A. R. Herrera-Orozco, and A. Molina-Cabrera, “Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids ”, Ing., vol. 29, no. 1, p. e21340, Jan. 2024.

MLA

Gil-González, Walter Julián, et al. “Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids ”. Ingeniería, vol. 29, no. 1, Jan. 2024, p. e21340, doi:10.14483/23448393.21340.

Turabian

Gil-González, Walter Julián, Andrés Ricardo Herrera-Orozco, and Alexander Molina-Cabrera. “Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids ”. Ingeniería 29, no. 1 (January 17, 2024): e21340. Accessed April 30, 2024. https://revistas.udistrital.edu.co/index.php/reving/article/view/21340.

Vancouver

1.
Gil-González WJ, Herrera-Orozco AR, Molina-Cabrera A. Stochastic Mixed-Integer Branch Flow Optimization for the Optimal Integration of Fixed-Step Capacitor Banks in Electrical Distribution Grids . Ing. [Internet]. 2024 Jan. 17 [cited 2024 Apr. 30];29(1):e21340. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/21340

Download Citation

Visitas

14

Dimensions


PlumX


Downloads

Download data is not yet available.
Loading...