DOI:

https://doi.org/10.14483/23448393.21972

Published:

2025-08-01

Issue:

Vol. 30 No. 2 (2025): May-August

Section:

Civil and Environmental Engineering

Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication

Propiedades físicas y mecánicas de biocompuestos de ratán y ácido poliláctico impresos mediante fabricación por filamentos fundidos

Authors

Keywords:

additive manufacturing, biocomposites, fused deposition modeling, mechanical properties, plant fibers (en).

Keywords:

manufactura aditiva, biocompuestos, propiedades mecánicas, fibras vegetales, fabricación por filamentos fundidos (es).

Downloads

Abstract (en)

Context: The use of alternative materials in construction requires the implementation of new methods that allow addressing the problems associated with the manufacture of traditional composite materials. In recent years, additive manufacturing techniques have attracted the attention of entrepreneurs and researchers due to its ease in processing complex designs and its low processing times. However, there is little information about the mechanical performance of composites obtained from the processing of biopolymer filaments reinforced with plant fibers.

Method: We evaluated the mechanical behavior of 3D-printed biocomposites subjected to axial tension loads. For the experimental design, filaments were constructed using 90% polylactic acid granules and 10% pulverized rattan fibers. The properties of the filaments were analyzed through microscopy, density, thermogravimetry, roughness, and hardness tests. The specimens were printed according to the dimensions specified in ASTM D638, and the effect of infill density and printing orientation on their physical and mechanical properties was analyzed. A statistical analysis was carried out in order to formulate equations allow predicting the behavior of the material based on the printing parameters considered.

Results: The obtained filaments were characterized and compared against their unreinforced counterparts. The specimens were printed using the fused deposition method. The effect of the printing parameters on the physical and mechanical properties of the stressed biocomposite was determined, and the impact of the studied variables was analyzed using a central composite design.

Conclusions: The surface roughness of the samples increased with the printing orientation and decreased as the infill density increased. Hardness and tensile strength increased significantly with increasing infill density, and they decreased with an increasing printing angle. The probes printed with 80% infill showed a notable increase in rigidity.

Abstract (es)

Contexto: El uso de materiales alternativos en la construcción requiere implementar nuevos métodos que permitan enfrentar los problemas asociados a la fabricación de materiales compuestos tradicionales. En los últimos, años las técnicas de fabricación aditiva han llamado la atención de emprendedores e investigadores debido a su facilidad para procesar diseños complejos y sus tiempos de procesamiento reducidos. Sin embargo, existe poca información sobre el desempeño mecánico de los compuestos obtenidos del procesamiento de filamentos de biopolímeros reforzados con fibras vegetales.

Método: Se evaluó el comportamiento mecánico de biocompuestos impresos en 3D sometidos a cargas de tensión axial. Para el diseño experimental, se elaboraron filamentos utilizando 90 % de gránulos de ácido poliláctico y 10 % de fibras pulverizadas de ratán. Las propiedades de los filamentos se analizaron mediante ensayos de microscopía, densidad, termogravimetría, rugosidad y dureza. Las probetas se imprimieron de acuerdo con las dimensiones especificadas en ASTM D638, y se analizó el efecto de la densidad de relleno y la orientación de impresión sobre sus propiedades físicas y mecánicas. Se realizó un análisis estadístico orientado a formular ecuaciones que permitieran predecir el comportamiento del material con base en los parámetros de impresión considerados.

Resultados: Los filamentos obtenidos fueron caracterizados y comparados con sus contrapartes no reforzadas. Las probetas se imprimieron mediante el método de deposición fundida. Se determinó el efecto de los parámetros de impresión sobre las propiedades físicas y mecánicas del biocompuesto sometido a esfuerzo, y se analizó el impacto de las variables estudiadas mediante un diseño compuesto central.

Conclusiones: La rugosidad superficial de las muestras aumentó con la orientación de impresión y disminuyó a medida que aumentó la densidad de relleno. La dureza y la resistencia a la tracción aumentaron significativamente con el incremento de la densidad de relleno y disminuyeron con el aumento del ángulo de impresión. Las probetas impresas con un 80 % de relleno mostraron un incremento notable en su rigidez.

References

R. Asheghi-Oskooee, P. Morsali, T. Farizeh, F. Hemmati, and J. Mohammdi-Roshandeh, “Environmentally friendly approaches for tailoring interfacial adhesion and mechanical performance of biocomposites based on poly(lactic acid)/rice straw,” Int. J. Biol. Macromol., vol. 283, no. 2, art. 137481, 2024. https://doi.org/10.1016/j.ijbiomac.2023.137481

H. Abdalla, K. P. Fattah, M. Abdallah, and A.K. Tamimi, “Environmental footprint and economics of a full-scale 3D-printed house,” Sustainability, vol. 13, no. 21, pp. 11978, 2021. https://doi.org/10.3390/su132111978

H. Ahmad, G. K. Chhipi-Shrestha, K. N. Hewage, and R. Sadiq, “A comprehensive review on construction applications and life cycle sustainability of natural fiber biocomposites,” Sustainability, vol. 14, no. 23, art. 15905, 2022. https://doi.org/10.3390/su142315905

W. Ahmad, S. J. McCormack, and A. Byrne, “Biocomposites for sustainable construction: A review of material properties, applications, research gaps, and contribution to circular economy,” J. Build. Eng., vol. 105, art. 112525, 2025. https://doi.org/10.1016/j.jobe.2024.112525

J. J. Andrew and H. N. Dhakal, “Sustainable biobased composites for advanced applications: recent trends and future opportunities – a critical review,” Compos. Part C Open, vol. 7, art. 100220, 2022. https://doi.org/10.1016/j.jcomc.2021.100220

N. T. Asfaw, R. Absi, B. A. Labouda, and I. El Abbassi, “Assessment of the thermal and mechanical properties of bio-based composite materials for thermal insulation: A review,” J. Build. Eng., vol. 97, art. 110605, 2024. https://doi.org/10.1016/j.jobe.2024.110605

C. Maraveas, “Production of sustainable construction materials using agro-wastes,” J. Mater., vol. 13, no. 262, pp. 2-29, 2020. https://doi.org/10.3390/ma13020262

Y. Yang et al., “Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment,” Carbohydr. Polym., vol. 323, pp. 121392, 2024. https://doi.org/10.1016/j.cej.2021.131040

A. Baigarina, E. Shehab, and M.H. Ali, “Construction 3D printing: A critical review and future research directions,” Prog. Addit. Manuf., vol. 8, no. 6, pp. 1–29, 2023. https://doi.org/10.1007/s40964-023-00409-8

R. Patel, C. Desai, S. Kushwah, and M. H. Mangrola, “A review article on FDM process parameters in 3D printing for composite materials,” Mater. Today Proc., vol. 60, no.3, pp. 2162–2166, 2022. https://doi.org/10.1016/j.matpr.2022.02.385

S. Kumar et al., “A comprehensive review of FDM printing in sensor applications: Advancements and future perspectives,” J. Manuf. Process., vol. 113, pp. 152–170, 2024. https://doi.org/10.1016/j.jmapro.2024.01.030

C. M. Thakar, S. S. Parkhe, A. Jain, K. Phasinam, G. Murugesan, and R. J. M. Ventayen, “3D Printing: Basic principles and applications,” Mater. Today Proc., vol. 51, pp. 842–849, 2022. https://doi.org/10.1016/j.matpr.2021.06.272

A. Al Rashid and M. Koç, “Additive manufacturing for sustainability and circular economy: Needs, challenges, and opportunities for 3D printing of recycled polymeric waste,” Mater. Today Sustain., vol. 24, art. 100529, 2023. https://doi.org/10.1016/j.mtsust.2023.100529

E. Spyridonos, V. Costalonga, J. Petrš, G. Kerekes, V. Schwieger, and H. Dahy, “Enhancing construction accuracy with biocomposites through 3D scanning methodology: Case studies applying pultrusion, 3D printing, and tailored fibre placement,” J. Compos. Mater., vol. 22, art. e04499, 2025. https://doi.org/10.1016/j.cscm.2025.e04499

I. Hui, E. Pasquier, A. Solberg, K. Agrenius, J. Håkansson, and G. Chinga-Carrasco, “Biocomposites containing poly(lactic acid) and chitosan for 3D printing – Assessment of mechanical, antibacterial and in vitro biodegradability properties,” J. Clean. Prod., vol. 147, pp. 106136, 2023. https://doi.org/10.1016/j.jmbbm.2023.106136

M. Shoeb, L. Kumar, and A. Haleem, “3D printed medical surgical cotton fabric–poly lactic acid biocomposite: A feasibility study,” J. Mater. Res. Technol., vol. 4, pp. 130-146, 2023. https://doi.org/10.1016/j.susoc.2023.07.001

M. A. Kacem et al., “Development and 3D printing of PLA bio-composites reinforced with short yucca fibers and enhanced thermal and dynamic mechanical performance,” J. Mater. Res. Technol., vol. 35, pp. 1246–1258, 2025. https://doi.org/10.1016/j.jmrt.2025.03.184

D. Fico, D. Rizzo, V. de Carolis, F. Montagna, E. Palumbo, and C. Esposito Corcione, “Development and characterization of sustainable PLA/olive wood waste composites for rehabilitation applications using fused filament fabrication (FFF),” J. Clean. Prod., vol. 56, art. 104673, 2022. https://doi.org/10.1016/j.jobe.2022.104673

H. Anuar et al., “Novel soda lignin/PLA/EPO biocomposite: A promising and sustainable material for 3D printing filament,” Mater. Today Commun., vol. 35, art. 106093, 2023. https://doi.org/10.1016/j.mtcomm.2023.106093

K. T. Mekonnen, G. M. Fanta, B. Z. Tilinti, and M. B. Regasa, “Polylactic acid based biocomposite for 3D printing: A review,” Compos. Mater., vol. 8, no.2, pp.57-71, 2024. https://doi.org/10.11648/j.cm.20240802.14

A. K. Trivedi, M. K. Gupta, and H. Singh, “PLA based biocomposites for sustainable products: A review,” Adv. Ind. Eng. Polym. Res., vol. 6, no.4, pp. 382–395, 2023. https://doi.org/10.1016/j.aiepr.2023.02.002

M. Darsin et al., “The effect of 3D printing filament extrusion process parameters on dimensional accuracy and strength using PLA-brass filaments,” J. Eng. Sci. Technol., vol. 18, no. 1, pp. 145–155, 2023. https://jestec.taylors.edu.my/Special%20Issue%20ICIST%202022_1/ICIST_1_13.pdf

M. Memiş and D. Akgümüş Gök, “Development of Fe-reinforced PLA-based composite filament for 3D printing: Process parameters, mechanical and microstructural characterization,” Ain Shams Eng. J., vol. 16, no. 2, art. 103279, 2025. https://doi.org/10.1016/j.asej.2025.103279

R. Sultan, M. Skrifvars, and P. Khalili, “Biocomposites containing poly(lactic acid) and chitosan for 3D printing – Assessment of mechanical, antibacterial and in vitro biodegradability properties,” Heliyon, vol. 10, no. 4, art. e26617, 2024. https://doi.org/10.1016/j.heliyon.2024.e26617

N. Gama, S. Magina, A. Ferreira, and A. M. M. V. Barros-Timmons, “Chemically modified bamboo fiber/ABS composites for high-quality additive manufacturing,” Polym. J., vol. 53, no. 12, pp. 1345–1353, 2021. https://doi.org/10.1038/s41428-021-00540-9

H. Ye, Y. He, H. Li, T. You, and F. Xu, “Customized compatibilizer to improve the mechanical properties of polylactic acid/lignin composites via enhanced intermolecular interactions for 3D printing,” Ind. Crop. Prod., vol. 205, art. 117454, 2023. https://doi.org/10.1016/j.indcrop.2023.117454

N. K. Kalita et al., “Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator,” Environ. Challenges, vol.3, art. 100067, 2021. https://doi.org/10.1016/j.envc.2021.100067

A. K. Trivedi et al., “PLA based biodegradable bio-nanocomposite filaments reinforced with nanocellulose: Development and analysis of properties,” Sci. Rep., vol. 14, art. 23819, 2024. https://doi.org/10.1038/s41598-024-71619-5

J. Mazur et al., “Mechanical properties and biodegradability of samples obtained by 3D printing using FDM technology from PLA filament with by-products,” Sci. Rep., vol. 15, art. 5847, 2025. https://doi.org/10.1038/s41598-025-89984-0

Standard test methods for direct moisture content measurement of wood and wood-based materials, ASTM D4442-20, ASTM International, West Conshohocken, PA, USA, 2020.

Plastics - Methods for determining the density of non-cellular plastics - Part 1: Immersion method, liquid pycnometer method and titration method, ISO 1183-1:2019, ISO, Geneva, Switzerland, 2019.

Metallic materials - Vickers hardness test - Part 1: Test method, ISO 6507-1:2018, ISO, Geneva, Switzerland, 2018.

Standard test method for tensile properties of plastics, ASTM D638-14, ASTM International, West Conshohocken, PA, USA, 2014.

D. Fico, D. Rizzo, V. de Carolis, F, Montagna, and C. Esposito, “Sustainable polymer composites manufacturing through 3D printing technologies by using recycled polymer and filler,” Polymers, vol.14, art. 3756, 2022. https://doi.org/10.3390/polym14183756

A. Patti, S. Acierno, G. Cicala, M. Zarrelli, and D. Acierno, “Assessment of recycled PLA-based filament for 3D printing,” Mater. Proc., vol. 7, pp. 16, 2021. https://doi.org/10.3390/IOCPS2021-11209

C. Pascual-González, M. Iragi, A. Fernández, J. P. Fernández-Blázquez, L. Aretxabaleta, and C. S. Lopes, “An approach to analyse the factors behind the micromechanical response of 3D-printed composites,” Compos. Part B Eng., vol. 186, art. 107822, 2020. https://doi.org/10.1016/j.compositesb.2020.107820

V. Reddy, O. Flys, A. Chaparala, C. E. Berrimi, V. Amogh, and B. G. Rosen, “Study on surface texture of fused deposition modeling,” Procedia Manuf., vol. 25, pp. 389-396, 2018. https://doi.org/10.1016/j.promfg.2018.06.108

M. Eryildiz “Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: An experimental investigation,” European Mech. Sci., vol. 5, pp.116-120, 2021. https://doi.org/10.26701/ems. 881254

How to Cite

APA

Sánchez-Cruz, M. L., Morales-Martin, L. Y., and Capote Rodríguez, G. (2025). Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication . Ingeniería, 30(2), e21972. https://doi.org/10.14483/23448393.21972

ACM

[1]
Sánchez-Cruz, M.L. et al. 2025. Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication . Ingeniería. 30, 2 (Aug. 2025), e21972. DOI:https://doi.org/10.14483/23448393.21972.

ACS

(1)
Sánchez-Cruz, M. L.; Morales-Martin, L. Y.; Capote Rodríguez, G. Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication . Ing. 2025, 30, e21972.

ABNT

SÁNCHEZ-CRUZ, Martha Lissette; MORALES-MARTIN, Luz Yolanda; CAPOTE RODRÍGUEZ, Gil. Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication . Ingeniería, [S. l.], v. 30, n. 2, p. e21972, 2025. DOI: 10.14483/23448393.21972. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/21972. Acesso em: 8 dec. 2025.

Chicago

Sánchez-Cruz, Martha Lissette, Luz Yolanda Morales-Martin, and Gil Capote Rodríguez. 2025. “Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication ”. Ingeniería 30 (2):e21972. https://doi.org/10.14483/23448393.21972.

Harvard

Sánchez-Cruz, M. L., Morales-Martin, L. Y. and Capote Rodríguez, G. (2025) “Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication ”, Ingeniería, 30(2), p. e21972. doi: 10.14483/23448393.21972.

IEEE

[1]
M. L. Sánchez-Cruz, L. Y. Morales-Martin, and G. Capote Rodríguez, “Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication ”, Ing., vol. 30, no. 2, p. e21972, Aug. 2025.

MLA

Sánchez-Cruz, Martha Lissette, et al. “Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication ”. Ingeniería, vol. 30, no. 2, Aug. 2025, p. e21972, doi:10.14483/23448393.21972.

Turabian

Sánchez-Cruz, Martha Lissette, Luz Yolanda Morales-Martin, and Gil Capote Rodríguez. “Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication ”. Ingeniería 30, no. 2 (August 1, 2025): e21972. Accessed December 8, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/21972.

Vancouver

1.
Sánchez-Cruz ML, Morales-Martin LY, Capote Rodríguez G. Physical and Mechanical Properties of Rattan and Polylactic Acid Biocomposites Printed Using Fused Filament Fabrication . Ing. [Internet]. 2025 Aug. 1 [cited 2025 Dec. 8];30(2):e21972. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/21972

Download Citation

Visitas

199

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
507
145

Indexed in

Editor & editorial board
profiles
Loading...