Selección de descriptores de tensión para localización de fallas en redes de distribución de energía

  • Juan José Mora Flórez Universidad Tecnológica de Pereira
  • Diego A. Corrales C. Universidad Distrital Francisco José de Caldas
  • Gilberto Carrillo Caicedo Universidad Industrial de Santander
Keywords: Calidad de Potencia, Interrupciones, Sistemas de Distribución, Localización de fallas, Máquinas de Soporte Vectorial. (es_ES)

Abstract (es_ES)

La interrupción del suministro de energía eléctrica en forma permanente o transitoria, afectan los índices de calidad asociados con la continuidad y ocasionan efectos negativos en usuarios industriales, comerciales y residenciales. Para resolver este problema, las redes de transmisión cuentan con esquemas eficientes de protección y localización de fallas; las empresas de distribución, en razón de sus implicaciones técnicas, económicas y operativas,están limitadas para implementar estrategias de identificación y localización de fallas. En este artículo se presenta una alternativa de solución al problema de localización de fallas en redes de distribución de energía eléctrica, con un mínimo de inversión por parte de estas empresas y que proporcione la información apropiada para la prevención y atención oportuna de fallas. Mediante la caracterización de la señal de tensión medida en la subestación de distribución y utilizando la técnica de optimización y aprendizaje conocida como Máquinas de Soporte Vectorial (SVM), se localiza la zona probable donde ocurrió la falla.Los resultados obtenidos, permiten con muy bajo costo, mejorar los tiempos de localización de fallas en los sistemas de distribución.

Abstract (en_US)

Permanent and transient power supply interruption affects power quality indexes related to continuity and causes negative effects in industry, commercial and residential users.As alternative to solve this problem,transmission networks have efficient fault location and protection schemes. Distribution facilities are constrained by technical,economical and operative aspects to implement fault identification and location strategies. In this paper an alternative solution of the fault location problem in power distribution systems, having a minimum of investment from utilities and giving appropriate information which helps to prevent and attend faults. By means of voltage signal characterization measured at the distribution substation and using an optimization and learning technique known as Support Vector Machines (SVM), the most probable zone where the fault was happened is located. The obtained results help to reduce time to locate faults in power distribution systems having a relatively low economical investment.

Downloads

Download data is not yet available.

References

J. Mora «Voltage Sag Characterization and Classification for Diagnosis in Electric Power Quality Domain», Master Thesis. University of Girona, Spain ­ 2003

R. Das, «Determining the Locations of Faults in Distribution Systems», Doctoral Thesis, University of Saskatchewan Saskatoon, Canada, Spring 1998.

T. Takagi, Y. Yamakoshi, J. Baba, K. Uemura and T. Sakaguchi «A new algorithm of an accurate fault location for EHV/UHV transmission lines: Part--Fourier transform method,» IEEE Transactions Power App. Syst., vol. PAS-100, Mar 1981. Pages. 1316­1323.

A. Phadke, S. Horowitz «Power System Relaying». Research studies press. Baldock, England 1995.

R. K Aggarwal, Y. Aslan, and A.T. Johns. «An interactive approach to fault location on overhead distribution lines with load taps». IEE Developments in Power System Protection. Conference Publication No. 434.1997, pp 184-187.

D. Novosel, D. Hart, J. Myllymaki «System for locating faults and estimating fault resistance in distribution networks with tapped loads». 1998. US Patent number 5,839,093.

J. Mora, S. Muñoz, G. Carrillo «Técnicas algorítmicas de localización de fallas como alternativa para reducir el efecto de las salidas en sistemas de potencia ­ Una revisión». III Internacional Simposium of Power Quality. Colombia, Bogotá, CD proceedings. Nov. 2005.

C. Cortes, V. Vapnik. «Support vector networks». Machine learning. 1995. Pags: 273-297

E. Rich, K. Knight. «Inteligencia artificial», Madrid, McGrawHill, 1994.

M. Corredor «Principios de inteligencia artificial y sistemas expertos». Universidad Industrial de Santander. Departamento de Ingeniería de Sistemas. Facultad de Ciencias Físico Mecánicas. Bucaramanga, 1992.

M. Bollen Understanding Power Quality Problems: Voltages Sags and Interruptions. IEEE Press. 2000.

IEEE recommended practice for monitoring electric power quality. IEEE Std 1159-1995, 2 Nov. 1995

B.G Jin, D.S Lee, M.S Choi, S.H Kang, «Intelligent Fault Location and Diagnosis System on Radial Distribution Systems,» Next-Generation Power Technology Center, Myongji University, Yongin, Korea, 2002.

C Burges «A tutorial on Support Vector Machines for Patter Recognition», http://www.kernel-machines.org/.

C. Campbell, «An Introduction to Kernel Methods», In R.J. Howlett and L.C. Jain, editors, Radial Basis Function Networks: Design and Applications, page 31. Springer Verlag, Berlin, 2000.

N. Cristianini, J. Shawe-Taylor, «An introduction to Support Vector Machines», Cambridge University Press, 2000.

A. Smola, S. Bernhard «Learning with Kernels Support Vector Machines, Regularization, Optimization and Beyond». The MIT Press, Cambridge. 2002.

How to Cite
Mora Flórez, J. J., Corrales C., D. A., & Carrillo Caicedo, G. (2005). Selección de descriptores de tensión para localización de fallas en redes de distribución de energía. Ingeniería, 11(1), 43-50. https://doi.org/10.14483/23448393.2309
Published: 2005-11-30
Section
Ciencia, investigación, academia y desarrollo