Identificación y programación de asignaturas a ofrecer en un programa de especialización

Identification and schedule of courses that should be offer by a specialization program

  • Germán Andrés Méndez Giraldo Universidad Distrital Francisco José de Caldas
  • Juan Pablo Caballero Villalobos Pontificia Universidad Javeriana
  • Lindsay Álvarez Pomar Universidad Distrital Francisco José de Caldas
Keywords: Programación lineal entera, Metaheurísticas, Algoritmos genéticos, Búsqueda tabú, Secuenciación con tiempo (es_ES)

Abstract (es_ES)

El presente artículo ilustra una propuesta alterna de solución para el problema de selección y programación de asignaturas que se origina en los programas de especialización al inicio de cada periodo académico. El resultado que se espera es una programación de las asignaturas que mayor satisfacción proporcione tanto a los estudiantes como a la dirección del programa. Como primera alternativa de solución al problema, se empleó la optimización matemática mediante un modelo de programación mixta para decidir qué cursos ofrecer, pero este enfoque no resultó exitoso desde el punto de vista práctico. Ante las dificultades prácticas encontradas, se propone el uso combinado de dos técnicas metaheurísticas de amplio reconocimiento en la literatura por sus capacidades para abordar problemas de alta complejidad: algoritmos genéticos y búsqueda tabú. El primero de ellos se utiliza para realizar el proceso de selección de las asignaturas a ofrecer durante el periodo. La segunda técnica se empleó para realizar la programación de las asignaturas seleccionadas. El diseño de las metaheurísticas es innovador y se encontraron resultados en un tiempo relativamente corto teniendo en cuenta la magnitud del problema.

Abstract (en_US)

This paper presents an alternative proposal for a solution of an existing problem for specialization programs. At the beginning of each academic period, academic programs have to select and schedule diverse courses. The expected result is a timetable that offers the greatest satisfaction to students and the direction of the program. As a first approach to solve the problem, a mathematical optimization was utilized through a mixed programming model in order to decide which courses to offer.However, this approach was not successful from a practical point of view. Due to the difficulties encountered from the practical point of view, a combined use of two meta heuristics techniques was proposed. These techniques have been widely recognized by the literature because of its capacities of facing high complexity problems: genetic algorithms and tabu search. The Genetic Algorithms were used to perform the selection process of the courses to be offered during the academic period, while Tabu search was used to define the scheduling of the selected courses. The design of the met heuristics is innovative and the results were presented in a relatively short period of time for the magnitude of the problem.

Downloads

Download data is not yet available.

References

Schaerf, Andrea. Tabu Search Techniques for Large HighSchool Timetabling Problems. Proceeding of the 13th National Conference of the American Asociation for artificial Intelligence. 1996

Schaerf, Andrea. A survey of Automated Timetabling. Artificial Intelligence Review. Kluwer Academic Publishers, Netherlands, 1999.

Abramson, D. Constructing School Timetables using Simulated Annealing: Sequential and Parallel Algorithms. Division of information technology departament of communication and electronic engineering Royal Melbourne Institute of Technology. Melbourne. 1991

Hinkin, Timothy, Thompson, Gary. SchedulExpert: Scheduling Courses in the Cornell University School of Hotel Administration. Interfaces. 2002

Goltz, Hans-Joachim, Küchler, Georg and Matzke, Dirk. Constraint-Based Timetabling for Universities. German National Research Center for Information Technology. Berlin

Caprara, Alberto, Fischetti, Matteo and Toth, Paolo. Modeling and Solving the Train Timetabling Problem. Informs. 2002

Andrea Rossi and Gino Dini. Dynamic Scheduling of FMS using a real ­ time genetic algorithm. International Journal of Production Research. 2000. Vol. 38. N.1. 1-20.

Krishnamoorthy C.S. and Rajeev S. Artificial Intelligence and Expert Systems for Engineers. Indian Institute of Technology Madras. CRC. 2000.

Méndez, Germán. Diseño de un Algoritmo Genético para un Sistema Logístico de Distribución. Revista Ingeniería. Vol. 2. Año 2001.

Tadao Murata. Petri Nets: Property, Análisis and Applications.

Proceedings of the IEEE. Vol 77. N 4. April 1989.

Méndez, Germán. Gerencia de Manufactura-Función de Planeación. U.D.F.J.C. 2003.

Gómez Gómez, A.; Parreño Fernández, J y Fernández Quesada, I. Aplicaciones De Los Algoritmos Genéticos En La Industria. Escuela Técnica Superior De Ingenieros Industriales De Gijón. Universidad De Oviedo.

Prada Romero, Jairo Fernando. Aplicación de un Algoritmo Genético al Problema Job Shop Scheduling. CIFI. Universidad de los Andes. Memo de Investigación No 482. Santafé de Bogotá. Marzo de 1998

Mejía, Gonzalo. Notas de la clase Programación de Producción. Maestría en Ingeniería Industrial. Universidad de los Andes. Semestre I de 2003

How to Cite
Méndez Giraldo, G. A., Caballero Villalobos, J. P., & Álvarez Pomar, L. (2005). Identification and schedule of courses that should be offer by a specialization program. Ingeniería, 11(2), 80-88. https://doi.org/10.14483/23448393.2682
Published: 2005-11-30
Section
Ciencia, investigación, academia y desarrollo

Most read articles by the same author(s)