Desarrollo hardware de un Procesador Difuso Tipo Dos

  • Miguel Alberto Melgarejo Rey Universidad Distrital Francisco José de Caldas y Universidad de los Andes
  • Carlos A. Peña Reyes Universidad Distrital Francisco José de Caldas,Univesidad del Valle,École Polytechnique Fédérale de Lausanne (EPFL), Suiza. Senior Reseacher, Laboratoire de Systemes Logiques

Resumen (es_ES)

Este artículo presente una propuesta arquitectural para un sistema difuso tipo dos de intervalo basado en hardware. En primer lugar, se describe un modelo computacional, el cual considera una organización paralela del proceso de inferencia difusa. A partir de este modelo, se concibe una arquitectura hardware con varias etapas pipeline para la ejecución paralela de las inferencias. difusas tipo dos. La arquitectura se emplea para especificar un procesador difuso tipo dos, el cual se implementa sobre tecnología FPGA. Los resultados muestran que este procesador puede ejecutar más de 30 millones de inferencias difusas tipo dos por segundo. Como contexto de aplicación, el procesador se emplea para la realización hardware de dos filtros difusos adaptativos.

Resumen (en_US)

This paper presents an architectural proposal for a hardware-based interval type-2 fuzzy inference system. First, it presents a computational model which considers parallel inference processing. Taking into account this model, we conceived a hardware architecture with several pipeline stages for full parallel execution of type-2 fuzzy inference. The architectural proposal is used for specifying a type-2 fuzzy processor, which is implemented over FPGA technology. Implementation results show this processor performs more than 30 millions of type-2 fuzzy inferences per second. As target application, it is used to implement two fuzzy adaptive filters.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Ascia G et al, 1999, VLSI Hardware Architecture for Complex Fuzzy Systems, IEEE Transactions on Fuzzy Systems, Vol. 7 ,No. 5, pp. 553-570.

Baturone I et al.,2000, Microelectronic design of fuzzy logic based systems, CRC Press , March , 2000.

Baundendistel K,1994, An improved method of scaling for real-time signal processing applications, IEEE Transactions on Education, Vol. 3, No. 3, pp.281-288

Blake J. J. et al,1998 , The implementation of fuzzy systems, neural networks and fuzzy neural networks using FPGAs, Information Sciences, Volume 112, pp. 151-168.

Bob R. I & Mendel J. M, 2002, Type-2 fuzzy sets made simple, IEEE Trans. on Fuzzy Systems, Vol. 10, No. 2, pp 117-127

Coffman K., 2000, Real World FPGA Design with Verilog, Pretince Hall PTR , New Jersey.

Djuro G. & Jaime B, 2000, Hardware implementations of fuzzy membership functions, operations, and inference, Computers & Electrical Engineering, Volume 26, Issue 1, pp. 85-105.

Gaona A et al., 2003, Sequential fuzzy inference system based on Distributed Arithmetic, Proc. of 2003 IEEE international symposium on computational intelligence for measurement systems and applications, pp.125-130

ITC & UIT, 2003, ITC Specification of Digital Terrestrial Television Transmissions in the United Kingdom, Technical document independent television commission, London UK.

Karnick, N. N &. Mendel, J. M, 1999, Type-2 fuzzy logic systems, IEEE Trans. on fuzzy systems, Vol. 7, pp 643-658.

K. Coffman, 2000, Real World FPGA Design with Verilog, Pretince Hall PTR , New Jersey.

Lago E. et al, 1998, XFVHDL: A tool for the synthesis of fuzzy logic controllers, proc. of DATE'98 Design Automation and Test in Europe, pp. 102-107

Liang Q. & Mendel J.M, 2000, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. On Fuzzy Systems, Vol 8. pp 535-550.

Liang Q. et al, 2000a, Conection admission control in ATM networks using survey based type-2 fuzzy logic systems, IEEE Trans. Syst., Man., Cybern., Vol 30,pp 329-339.

Liang, Q. et al, 2000b, "Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters", IEEE. Trans. On Fuzzy Systems, Vol. 8, No. 5, pp 551-563.

Liang Q. et al, 2001, MPEG VBR video traffic modeling and classification using fuzzy techniques, IEEE trans. On Fuzzy systems , Vol 9 , no 1, pp. 183 - 193.

Lopez S. et al, Frequency domain singleton fuzzification in the design of hardware based fuzzy logic controllers, Proc. of the 18th IEEE international symposium on Intelligent Control, 2003.

McEachern J. F. & Miyamoto R. T, 2003, Emerging tecnologies: ONR's need for intelligent computation in underwater sensors, Computational Intelligence The experts speak , IEEE Press - Wiley Interscience, , Chap. 5, pp 60-61.

Melgarejo M. & Olea D, 2003, Distributed Arithmetic in the Design of High Speed Hardware Fuzzy Inference Systems, 22nd International Conference of the North American Fuzzy Information Processing Society, pp. 116-120.

Melgarejo M et al, 2004, Computational model and architectural proposal for a hardware type-2 fuzzy system, 2nd IASTED Conference on Neural Network and Computational Intelligence, Switzerland, (To appear)

Mellin P. & Castillo O, 2002, A New Approach for Quality Control of Sound Speakers Combining Type-2 Fuzzy Logic and Fractal Theory, Proc. of the 2002 IEEE international conference on Fuzzy systems, pp. 825 -828.

Mellin P. & Castillo O, 2003, Intelligent control of non linear plants using Type-2 Fuzzy Logic and Neural Networks, Proc. of the 2003 IEEE international conference on Fuzzy Systems, pp. 1558 -1562.

Mendel J. M, 2001a., Uncertain Rule-Based Fuzzy Logic Systems , introduction and new directions, Prentice Hall PTR, Upper Saddle River, NJ.

Mendel J. M., 2001b, The perceptual computer: an architecture for computing with words, Proc. of the 2001 IEEE International Conference on Fuzzy Systems, pp. 35-38.

Patra S., Mulgrew B, 1998, Efficient Architecture for bayesian equalization using fuzzy filters, IEEE Transacations on circuits and systems II: Analog and digital signal processing , Vol. 45 , No. 7, pp.812-820.

Obermann S. & Flynn M, 1997, Division algorithms and implementations, IEEE Transactions on Computers, Vol. 46, Issue: 8, pp 833-854.

Wang L. X., 1997, A course on Fuzzy Systems and Control, New Jersey, Prentice Hall,

Wang W et al, 2001, Low power FIR filter FPGA implementation based on distributed arithmetic and residue number system, Proc. of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, Vol: 1, pp. 102 -105

White S. A., Applications of Distributed Arithmetic to Digital Signal Processing: A tutorial Review, IEEE ASSP Magazine, Vol. 6 No 3, 1989.

Wu H. & Mendel J.M, 2001, Introduction to Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems, pro. of the 2001 IEEE International Conference on Fuzzy Systems, pp. 662-665.

Wu H., Mendel J.M, 2002, Uncertainty Bounds and their use in the design of interval type 2 fuzzy logic systems, IEEE transactions on Fuzzy systems, Vol 10, No 5, pp. 622-639.

Xilinx, 2002, Virtex-II 1.8V Field Programmable Gate Arrays, Xilinx product specification V 2.3.

Zadeh, L. A, 1975, "The Concept of a Linguistic Variable and its Application to Approximate Reasoning", Information Sciences, 8, pp. 43-80.

Cómo citar
Melgarejo Rey, M. A., & Peña Reyes, C. A. (2003). Desarrollo hardware de un Procesador Difuso Tipo Dos. Ingeniería, 9(1), 17-25. https://doi.org/10.14483/23448393.2737
Publicado: 2003-11-30
Sección
Ciencia, investigación, academia y desarrollo