The KITE Model for Assessment of Academic Software Products

  • Sergio Andrés Rojas Galeano Universidad Distrital Francisco José de Caldas
  • Henry Alberto Diosa Universidad Distrital Francisco José de Caldas
  • Miguel Alberto Melgarejo Rey Universidad Distrital Francisco José de Caldas
Keywords: Assessment of software products, technological innovation, academic groups productivity. (en_US)
Keywords: Evaluación de productos de software, innovación tecnológica, productividad de grupos académicos (es_ES)

Abstract (es_ES)

Se presenta a continuación una propuesta para valorar productos de software desarrollados por grupos de investigación en el ámbito académico. Con este objetivo, se describe un modelo que consiste de cuatro ejes determinantes para la medición o valoración de un producto de software cualquiera: El efecto en la diseminación avance en el conocimiento (K), el impacto en la población usuaria potencial (I), la innovación tecnológica (T) y los aspectos de calidad del producto desde la perspectiva de la disciplina de la Ingeniería de Software (E). Estos determinantes se integran en un modelo gráfi co que hemos denominado KITE. El modelo admite tanto interpretación numérica como geométrica para facilitar, a los tomadores de decisiones, el análisis de perfi les de productividad de software de una unidad académica, desde el punto de vista cuantitativo o cualitativo. Las escalas de las valoraciones para cada determinante son también descritas de manera sucinta y están acompañadas de listas de chequeo preliminares, esquematizadas como una propuesta de instrumentalización de la medición en concordancia con el modelo.

Abstract (en_US)

We reflect on the topic of assessing the merit of software products developed by research groups within the academia. To this end, a model is proposed to defi ne the score of an arbitrary software product. The model consists of four determinants, namely new knowledge dissemination effect (K), impact in target population (I), technological innovation (T), and engineering achievement (E). These determinants are integrated into a ”KITE” graphical model. The model admits both geometric and numeric interpretations, enabling decision makers to analyze profi les of software productivity for a particular academic unit from a quantitative or qualitative viewpoint. The ratings, which enable software to be scored regarding each determinant, are also described. Following the model, preliminary test lists are sketched as a proposal of measurement instruments for these scores.

Downloads

Download data is not yet available.

References

Elie A. Akl, Joerg J. Meerpohl, Dany Raad, Giulia Piaggio, Manlio Mattioni, Marco G. Paggi,

Aymone Gurtner, Stefano Mattarocci, Rizwan Tahir, Paola Muti, and Holger J. Schnemann.

Effects of assessing the productivity of faculty in academic medical centres: a systematic review.

Canadian Medical Association Journal, 184(11):E602–E612, 2012.

Dino Dai Zovi Chris Wysopal, Lucas Nelson and Elfriede Dustin. The Art of Software Security

Testing. Identifying Software Security Flaws. Symantec-Press, 2007. [3] Colciencias.

Resolucio´ n No. 00285 de 2004, 2004.

Henry Edison, Nauman Bin Ali, and Richard Torkar. Towards innovation measurement in the

soft- ware industry. J. Syst. Softw., 86(5):1390–1407, May 2013.

Organisation for Economic Co-operation, Development, and Statistical Offi ce of the

Euro- pean Communities. Oslo manual: guidelines for collecting and interpreting innovation

data. Mea- surement of Scientifi c and Technological Activities. 2005.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Software qualities and principles. In The

Computer Science and Engineering Handbook. Second Edition, pages 101–1 a 101–25. 2004.

Claudia Gonzalez-Brambila and Francisco M. Veloso. The determinants of research output and

impact: A study of mexican researchers. Research Policy, 36(7):1035–1051, September 2007.

Bob Grant. New impact factors yield surprises. The Scientist, 2010.

Paul H. Jensen and Elizabeth Webster. Another look at the relationships between innovation proxies.

Australian Economic Papers, 48(3):252–269, 2009.

Gary Jordan and Esbjrn Segelod. Software innovativeness: outcomes on project performance,

knowledge enhancement, and external linkages. R & D Management, 36(2):127–142,

Eugenio Matijasevic. Acta Me´dica Colombiana y las fuerzas de produccio´ n social. Acta Medica

Colombiana, 35:107 – 112, 09 2010.

J. McGovern. A Practical Guide to Enterprise Architecture. The Coad series. Prentice Hall

PTR, 2004.

Tom Misteli. Eliminating the impact of the impact factor. The Journal of Cell Biology, 201(5):651–

, 2013.

Glenford J. Myers. The ART of SOFTWARE TESTING. John Wiley and Sons Inc., 2004.

I. Sommerville. Software Engineering. International computer science series. AddisonWesley,

A. W. Wilhite and E. A. Fong. Coercive citation in academic publishing. Science, 335(6068):542–

, 2012.

How to Cite
Rojas Galeano, S. A., Diosa, H. A., & Melgarejo Rey, M. A. (2013). The KITE Model for Assessment of Academic Software Products. Ingeniería, 18(2). https://doi.org/10.14483/udistrital.jour.reving.2013.2.a01
Published: 2013-10-30

Most read articles by the same author(s)

1 2 3 > >>