Perceptrón basado en Kernel para reconocimiento de dígitos manuscritos

A kernel-based perceptron implementation for hand-written digit recognition

  • Sergio Andrés Rojas Galeano Universidad Distrital Francisco José de Caldas, y University of London
Palabras clave: Aprendizaje basado en kernel, redes neuronales artificiales, reconocimiento de patrones. (es_ES)

Resumen (es_ES)

Las técnicas de aprendizaje basadas en transformaciones con núcleos o matrices (kernel-based learning machines) han dado un nuevo horizonte a las redes neuronales artificiales para la solución de problemas de reconocimiento y clasificación en dominios no-lineales. En este artículo se describe el funcionamiento e implementación de un perceptrón para reconocimiento de los diez dígitos arábigos en patrones de escritura real, utilizando una transformación con núcleo polinomial. El clasificador alcanza niveles de reconocimiento con una tasa de éxito cercana al 93% en patrones no vistos durante el entrenamiento

Resumen (en_US)

Kernel-based learning machines have been proposed as a new approach to use neural networks architectures applied to non-linear classification and recognition problems with many good results reported recently. In this paper we describe the implementation of a perceptron neural network for classification of real digit number data set, based on the kernel learning method. The classifier obtains a successful recognition score near to 93% on unseen patterns.

Descargas

La descarga de datos todavía no está disponible.

Referencias

F. Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review, 65(6):386-408, 1958.

Herbrich, R, Learning Kernel Classifiers, The MIT Press, 2002.

Cristianini, N.; Shawe-Taylor, J. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004

Chen, J.H; Chen C.S. "Fuzzy Kernel Perceptron". IEEE Transactions On Neural Networks, Vol. 13, No. 6: 1364-1373, 2002.

Anguita, D.; Boni, A.; Ridella, S. "The Digital Kernel Perceptron". Electronics Letters Vol. 38 No. 10 pp. 445 446, 2002.

Graepel, T; Herbrich, R. Invariant Pattern Recognition by Semidefinite Programming Machines. Proceedings of Neural Information Processing Systems Conference, NIPS 2003.

Mayor información en http://www.cedar.buffalo.edu/Databases/CDROM1/

Cómo citar
Rojas Galeano, S. A. (2003). Perceptrón basado en Kernel para reconocimiento de dígitos manuscritos. Ingeniería, 9(1), 4-7. https://doi.org/10.14483/23448393.2734
Publicado: 2003-11-30
Sección
Ciencia, investigación, academia y desarrollo