DOI:
https://doi.org/10.14483/23448393.15329Published:
2020-03-12Issue:
Vol. 25 No. 1 (2020): January - AprilSection:
Petroleum EngineeringExtractos de las Hojas de Salvia officinalis y Sambucus peruviana H.B.K. como Inhibidores de Incrustación
Extracts from Salvia Officinalis and Sambucus Peruviana H.B.K. Leaves as Scale Inhibitors
Keywords:
Production water, scale bioinhibitor, oil industry (en).Keywords:
Agua de producción, bioinhibidor de incrustaciones, industria petrolera (es).Downloads
References
K. Arnold y M. Stewart, Surface production operations, design of oil handling systems and facilities. Houston: Gulf Professional Publishing, 2008.
A. B. BinMerdhah, “Inhibition of barium sulfate scale at high-barium formation water”, Journal of Petroleum Science and Engineering, vol. 90, pp. 124–130, 2012. https://doi.org/10.1016/j.petrol.2012.04.005
M. Abdou et al., “Valor del agua de formación”, Oilfield Review, vol. 23, n.◦ 1, pp. 26-39, 2011.
K. S. Venkateswarlu, Water chemistry, industrial and power station water treatment. Bombay: New Age International Limited Publishers, 1996.
M. F.B. Sousa and C. A. Bertran, “New methodology based on static light scattering measurements for evaluation of inhibitors for in bulk CaCO3 crystallization”, Journal of Colloid and Interface Science, vol. 420, pp. 57–64, 2014. https://doi.org/10.1016/j.jcis.2014.01.001
A. Khormali, A. R. Sharifov, and D. I. Torba, “Increasing efficiency of calcium sulfate scale prevention using a newmixture of phosphonate scale inhibitors during waterflooding”, Journal of Petroleum Scienceand Engineering, vol. 164, pp. 245-258, 2018. https://doi.org/10.1016/j.petrol.2018.01.055
Y. M. Al-Roomi, K. F. Hussain and M. Al-Rifaie, “Performance of inhibitors on CaCO3 scale deposition in stainless steel and copper pipe surface”, Desalination, vol. 375, pp. 138–148, 2015. https://doi.org/10.1016/j.desal.2015.07.028
A. Rochdi et al., “Inhibitive properties of 2,5-bis(n-methylphenly)-1,3,4-oxidiazole and biocide on corrosion”, Corrosion Science, vol. 80, pp. 442–452, 2014. https://doi.org/10.1016/j.corsci.2013.11.067
A. M. Abdel-Gaber, B.A. Abd-El-Nabey, E. Khamis, y D.E. Abd-El-Khalek, “A natural extract as scale and corrosion inhibitor for steel surface in brine solution”, Desalination, vol. 278, pp. 337–342, 2011. https://doi.org/10.1016/j.desal.2011.05.048
Suharso, Buhani, S. Bahri y T. Endaryanto, “Gambier extracts as an inhibitor of calcium carbonate (CaCO3) scale formation”, Desalination, vol. 265, pp. 102–106, 2011. https://doi.org/10.1016/j.desal.2010.07.038
A. Reyes, J. Ruiz y L. Castillo, “Inhibidor de incrustaciones natural a base del mucílago de la hoja de cayena (Hibiscus rosa sinensis)”, Enfoque UTE, vol. 10, n.◦ 2, pp. 63-78, 2019. https://doi.org/10.29019/enfoque.v10n2.460
Z. Mohammadi y M. Rahsepar, “The use of green Bistorta Officinalis extract for effective inhibition of corrosion and scale formation problems in cooling water system”, Journal of Alloys and Compounds, vol. 770, pp. 669-678, 2018. https://doi.org/10.1016/j.jallcom.2018.08.198
P. Mahase y J. Rivas, Desarrollo de un inhibidor a base de linaza (Linum Usitatissimum) que controle la precipitación de incrustaciones a nivel experimental, Tesis de grado, Departamento de Ingeniería de Petróleo, Universidad de Oriente, Maturín, 2018.
J. Aguilera y H. Mencía, Determinación del rango de temperatura óptimo de un inhibidor de incrustaciones a base de linaza (Linum usitatissimum) en muestras de agua de producción del Campo Oritupano a una presión de trabajo de 100 lpc, Tesis de grado, Departamento de Ingeniería de Petroleo, Universidad de Oriente, Matutín, 2018.
H. Wang, M. Gao, Y. Guo, Y. Yang, y R. Hu, “A natural extract of tobacco rob as scale and corrosion inhibitor in artificial seawater”, Desalination, vol. 398, pp. 198-207, 2016. https://doi.org/10.1016/j.desal.2016.07.035
K. Rendón y E. Azocar, Evaluación de la aplicabilidad de pectina deshidratada a base de parchita (Passiflora edulis) como inhibidor de incrustaciones minerales, Tesis de grado, Departamento de Ingeniería de Petróleo, Universidad de Oriente, Maturín, 2016.
A. Fuenmayor y R. Peña, Evaluación de una pectina natural a base de parchita (Passiflora edulis) como inhibidor de incrustaciones en muestras de agua sintética, Tesis de grado, Departamento de Ingeniería de Petróleo, Universidad de Oriente, Maturín, 2016.
X. Guo et al., “Preparation, characterization and scale performance of scale inhibitor copolymer modification with chitosan”, Journal of Industrial and Engineering Chemistry, vol. 18, pp. 2177–2183, 2012. https://doi.org/10.1016/j.jiec.2012.06.015
National Association of Corrosion Engineers (NACE), “Laboratory Screening Tests to Determine the Ability of Scale Inhibitors to Prevent the Precipitation of Calcium Sulfate and Calcium Carbonate from Solution”, 2007.
ASTM International, ASTM D369: Standard Test Method for Specific Gravity of Creosote Fractions and Residue. West Conshohocken: ASTM International, 2002. ↑4 [21] Comisión Venezolana de Normas Industriales, COVENIN 2342-86 Agua potable. Determinación del residuo filtrable total secado a 180 ◦C (Solidos disueltos). Caracas: Fondonorma, 1986.
Comisión Venezolana de Normas Industriales, COVENIN 2461-87 Aguas naturales, industriales y residuales. Determinacion de sólidos, Primera ed. Caracas: Fondonorma, 1987.
Comisión Venezolana de Normas Industriales, COVENIN 2462-87 Aguas naturales, industriales y residuales. Determinación del pH. Caracas: Fondonorma, 1987.
American Petroleum Institute, API RP 13B-1 Recommended Practice for Field Testing Water-based Drilling Fluids. Washington: API Publishing Services, 2017.
Comisión Venezolana de Normas Industriales, COVENIN 3141-95 Aguas naturales, industriales y residuales. Determinación de cloruros. Caracas: Fondonorma, 1995.
Comisión Venezolana de Normas Internacionales, COVENIN 2771-91 Aguas naturales, industriales y residuales. Determinación de dureza. Caracas: Fondonorma, 1991
W. J. Langelier, “Chemical equilibria in water treatment”, Journal of the American Water Works Association, vol. 38, n.◦ 2, pp. 169-178, 1946. https://www.jstor.org/stable/23349196
ASTM International, ASTM C136-01, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken: ASTM International, 2001
ASTM International, ASTM E1148-02 Standard Test Method for Measurements of Aqueous Solubility. West Conshohocken: ASTM International, 2002.
ASTM International, ASTM D445-19, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). West Conshohocken: ASTM International, 2019.
R. Arnold et al., “Manejo de la producción de agua: de residuo a recurso”, Oilfield Review Magazine, pp. 30-45, 2004.
Decreto 883, Normas para la Clasificación y el Control de la Calidad de los Cuerpos de Agua y Vertidos o Efluentes Líquidos. Caracas, 1995.
J. Gal y Y. Fovet, “Mechanisms of scale formation and carbon dioxide partial pressure influence, Part I, elaboration of an experimental method and a scaling model”, Water Research, vol. 36, pp. 755-763, 2002. https://doi.org/10.1016/S0043-1354(01)00270-6
Y. M. Al-Roomi y K. F. Hussain, “Potential kinetic model for scaling and scale inhibition mechanism”, Desalination, vol. 393, pp. 186–195, 2016. https://doi.org/10.1016/j.desal.2015.07.025
American Public Health Association (APHA), Standard Methods for the examination of water and wastewaters, Washington: American Public Health Association and American Water Works Association, 2005.
J. D. Hem, “Study and Interpretation of the Chemical Characteristics of Natural Water”, US Geological Survey Water-Supply Paper, pp. 2254- 2263, 1986.
C. Patton, Applied water technology, Oklahoma: Editorial Campbell Petroleum Series, 1995.
E. Rice, R. Baird, A. Eaton y L. Clesceri, Standard Methods for the Examination of Water and Wastewater. Washington: American Public Health Association and American Water Works Association, 2012.
Alberta Health Service, “Interpretation of Chemical Analysis of Drinking Water Recommended Levels”. [En línea]. Disponible en; http://www.albertahealthservices.ca/eph.asp
Observatorio Nacional de Degradación de Tierras y Desertificación, “Indicadores”, 2014. [En línea]. Disponible en: http://www.desertificacion.gob.ar/indicadores/suelo-ph/
N. Kevern, “Alkalinity water, classification systems, Part 1”, Michigan State University, Michigan, U.S.A., 1989.
J. Lillo, “Técnicas hidrogeoquímicas”, Tesis de maestría, Universidad Rey Juan Carlos, Madrid, 2007.
NALCO, The NALCO Water Handbook, México D.F.: Editorial McGraw-Hill, 2004.
D. Jenkins y V. Snoeyink, Química del Agua. México D.F.: Editorial Limusa, 2003.
M.C. Menkiti, C.M. Sgu, and T.K. Udeigwe, “Extraction of oil from Terminalia catappa L.: process parameter impacts, kinetics, and thermodynamics”, Industrial Crops Products, vol. 77, pp. 713–723, 2015. https://doi.org/10.1016/j.indcrop.2015.08.019
S. Sulaiman, A.R. Abdul Aziz y M.K. Aroua, “Optimization and modeling of extraction of solid coconut waste oil”, Journal Food Engineering, vol. 114, pp. 228–234, 2013. https://doi.org/10.1016/j.jfoodeng.2012.08.025
Q. He, B. Du, y B. Xu, “Extraction optimization of phenolics and antioxidans from black goji berry by accelerated solven extractor using response sourface methodology”, Applied Sciences, vol. 8, n.◦ 10, pp. 1905–1918, 2018. https://doi.org/10.3390/app8101905
G. Ríos y P. Ruiz, Determinación de los rangos óptimos de aplicación de un inhibidor de incrustaciones natural a base del mucílago extraído de la hoja de la planta de de cayena (Hibiscus rosa-sinensis), Trabajo de grado, Departamento de Ingeniería de Petróleo, Universidad de Oriente, Maturín, 2018.
M. Crabtree et al., “La lucha contra las incrustaciones-remoción y prevención”, Oilfield Review Magazine, 1999.
C. Mata, Polisacaridos naturales como agentes anti-incrustantes, Trabajo de grado, Universidad Simón Bolívar (USB), Caracas, 2007.
N. Garin et al., “Cambios en la viscosidad del agua con espesantes por la adición de fármacos altamente prescritos en geriatría”, Nutrición Hospitalaria, vol. 27, n.◦ 4, pp. 1298-1303. http://dx.doi.org/10.3305/nh.2012.27.4.5838
M. Grieve. “Sages.Botonical.com”. [En línea]. Disponible en: http://www.botanical.com/botanical/mgmh/s/sages-05.html
B. M. Grajales, M. M. Botero y J. F. Ramírez, “Características, manejo, usos y beneficios del sauco (Sambucus nigra L.) con énfasis en su implementación en sistemas silvopastoriles del Trópico Alto”, ´ Revista de Investigación Agraria y Ambiental, vol. 6, n.◦ 1, pp. 155-168, 2015. https://doi.org/10.22490/21456453.1271
N. Stanciuc et al., “Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation”, Journal of Food Engineering, vol. 223, pp. 197-207, 2018. https://doi.org/10.1016/j.jfoodeng.2017.10.019
A. A. Al-Hamzah y C. M. Fellows, “A comparative study of novel scale inhibitors with commercial scale inhibitors used in seawater desalination”, Desalination, vol. 359, pp. 22–25, 2015. https://doi.org/10.1016/j.desal.2014.12.027
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Luis Antonio Castillo Campos, Steevenson José Barreto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.












