DOI:

https://doi.org/10.14483/23448393.19867

Published:

2023-10-19

Issue:

Vol. 28 No. 3 (2023): September-December

Section:

Mechanical Engineering

Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel

Estudio del efecto de adiciones de titanio en las propiedades mecánicas y de corrosión del acero pulvimetalúrgico AISI 316

Authors

Keywords:

pulvimetalurgia, sensitización, estabilización, sinterización, aceros inoxidables austeníticos (es).

Keywords:

powder metallurgy, sensitization, stabilization, sintering, austenitic stainless steels (en).

Abstract (en)

Context: Powder metallurgy uses metallic and/or non-metallic powders that, through mixing, compacting, and sintering operations, allow obtaining large series of products. In austenitic stainless steels, Cr23C6-type carbides can precipitate at temperatures between 450 and 950 °C. When this occurs, the steel is susceptible to being attacked at its grain boundaries by a phenomenon called sensitization. Titanium is added as a ‘stabilizer’ because it has a greater affinity with carbon for the formation of species at a temperature of approximately 900 ºC, and, during cooling, it consumes the carbon forming MC-type carbides, inhibiting the precipitation of Cr23C6.

Method: The composition and morphology of the powders were characterized, leading to the formulation of an alloy matrix consisting of a mixture of AISI 316 steel powders of two different particle-size distributions in a proportion that produced the highest density and the lowest porosity in the sintered material. Titanium was added at two levels (0,4 and 1,0 wt%), and sintering was carried out with nitrogen. The corrosion rate was determined by potentiodynamic polarization. Vickers hardness and pin-on-disk wear tests were performed. The stages were complemented with a microstructural analysis.

Results: The addition of 0,4 wt% of titanium decreased the steel’s rate of corrosion, albeit in the absence of passivation. The microstructure consists of austenite, ferrite, and TiC precipitates. The addition of 1,0 wt%Ti showed an increase in the corrosion rate, with a microstructure containing austenite, ferrite, TiC carbides, and the Laves ɳ-Fe2Ti phase.

Conclusions: The results were compared against thermodynamic simulations in the Thermo-Calc software, which were consistent with the microstructural analysis, showing the phenomena of stabilization as well as the precipitation of intermetallic phases and highlighting the importance of establishing strict controls in the formulation of powder metallurgical alloys due to the transformations that can take place due to the effect of the thermal cycles of the process.

Abstract (es)

Contexto: La pulvimetalurgia utiliza polvos metálicos y/o no metálicos que, mediante operaciones de mezcla, compactación y sinterización, permiten obtener grandes series de productos. En los aceros inoxidables austeníticos, los carburos de tipo Cr23C6 pueden precipitar a temperaturas entre 450 y 950 °C. Cuando esto ocurre, el acero es susceptible de ser atacado en sus límites de grano por el fenómeno denominado sensitización. El titanio se agrega como ‘estabilizador’ porque tiene mayor afinidad con el carbono para la formación de especies a una temperatura de aproximadamente 900 ºC y, durante el enfriamiento, consume el carbono formando carburos tipo MC, inhibiendo la precipitación de Cr23C6.

Método: Se caracterizó la composición y morfología de los polvos, lo que condujo a la formulación de una matriz de aleación compuesta por una mezcla de polvos de acero AISI 316 de dos granulometrías diferentes en una proporción que produjo la mayor densidad y la menor porosidad del material sinterizado. Se añadió titanio en dos niveles (0,4 y 1,0 % en peso) y se sinterizó con nitrógeno. La velocidad de corrosión se determinó por polarización potenciodinámica. Se realizaron pruebas de dureza Vickers y de desgaste pin-on-disk. Las etapas se complementaron con un análisis microestructural.

Resultados: La adición de 0,4 % en peso de titanio disminuyó la velocidad de corrosión del acero, si bien en ausencia de pasivación. La microestructura consiste en precipitados de austenita, ferrita y TiC. La adición de 1,0 % en peso de Ti mostró un aumento en la velocidad de corrosión, con una microestructura que contenía austenita, ferrita, carburos de TiC y la fase Laves ɳ-Fe2Ti.

Conclusiones: Los resultados fueron comparados con simulaciones termodinámicas del software Thermo-Calc, consistentes con el análisis microestructural, mostrando los fenómenos de estabilización y la precipitación de fases intermetálicas, y destacando la importancia de establecer un control estricto en la formulación de aleaciones pulvimetalúrgicas debido a las transformaciones que pueden generarse por efecto de los ciclos térmicos del proceso.

Author Biographies

Luz Adriana Cañas Mendoza, Technological University of Pereira

Metallurgical engineer, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia; Master of Metallurgical Engineering, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia; PhD in Materials Science and Engineering, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia.

Yaneth Pineda-Triana , Pedagogical and Technological University of Colombia

Metallurgical engineer, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia; PhD in Mechanical and Materials Engineering, Universidad Politécnica de Valencia – Internacional; senior researcher recognized by MinCiencias (Colombian Ministry of Science, Technology, and Innovation). She is a professor at Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia, since 1994. Researcher and coordinator of the failure analysis area at Instituto para la Investigación y la Innovación en Ciencia y Tecnología de Materiales (Institute for Research and Innovation in Materials Science and Technology, INCITEMA); coordinator of the Master’s Program in Metallurgy and Materials Science of Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia; coordinator of the Doctoral Program in Materials Science and Engineering of Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia.

Lais Mujica Roncery , Pedagogical and Technological University of Colombia

Chemical engineer, Universidad Nacional de Colombia (UNAL), Bogotá, Colombia; Master of Chemical Engineering, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia; PhD in Engineering, Ruhr-Universität Bochum, Bochum, Germany; senior researcher recognized by MinCiencias (Colombian Ministry of Science, Technology, and Innovation). She is a professor at Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia, since 2017. Director of Grupo de Investigación en Materiales Siderúrgicos (Siderurgic Materials Research Group) at UPTC, Tunja, Colombia (2017-2022); director of Instituto para la Investigación y la Innovación en Ciencia y Tecnología de Materiales (Institute for Research and Innovation in Materials Science and Technology, INCITEMA), Tunja, Colombia, since 2023.

References

M. Groover, Fundamentos de manufactura moderna: materiales, procesos y sistemas, 3rd ed., New York, NY, USA: McGraw-Hill, 2007.

A. Szewczyk-Nykiel, “The influence of molybdenum on corrosion resistance of sintered austenitic stainless steels,” Tech. Trans., vol. 2015, pp. 131-142, 2015. https://doi.org/10.4467/2353737XCT.15.344.4865

M. Rosso, “Contribution to study and development of PM stainless steels with improved properties,” J. Achievements Mater. Manuf. Eng., vol. 24, no. 1, p. 178, 2017. https://www.researchgate.net/publication/40804796_Contribution_to_study_and_development_of_PM_stainless_steels_with_improved_properties

S. Schmid and S. Kalpakjian, Manufactura, ingeniería y tecnología, 5 ed., México: Pearson-Prentice Hall, 2008.

N. Kurgan, Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials,” Mater. Design, vol. 55, p. 235-241, 2014. https://doi.org/10.1016/j.matdes.2013.09.058

J. J. Ibáñez Montenegro, “Estudio de la soldadura en aceros austeníticos,” undergraduate thesis, Fac. Ingeniería, Univ. Piura, Carabobo, Venezuela, 2005.

J. P. Vázquez, “Estudio de la precipitación de carburos en el acero inoxidable AISI 304 en enfriamiento continuo,” Master’s thesis, Fac. Ing. Mec. Elec., Univ. Autónoma de Nuevo León, Nuevo León, México, 1996.

S. Ali et al., “Synthesis, surface nitriding and characterization of Ti-Nb modified 316L stainless steel alloy using powder metallurgy,” Mater., vol. 14, no. 12, art. 3270, 2021. https://doi.org/10.3390/ma14123270

E. Klar and P. K. Samal, Powder metallurgy stainless steels: Processing, microstructure, and properties, Novelty, OH, USA: ASM International, 2007.

Moral et al., “Aqueous Corrosion Behaviour of Sintered Stainless Steels Manufactured from Mixes of Gas Atomized and Water Atomized Powders,”. Corr. Sci., vol. 51, no. 8. p. 1653, 2009. https://doi.org/10.1016/j.corsci.2009.04.017

Standard Practice for Characterization of Particles, ASTM F1877, ASTM International, 2016. https://doi.org/10.1520/F1877-16

Standard test method for apparent density powders using Arnold meter, ASTM B703, ASTM International, 1994. https://doi.org/10.1520/b0703-94r99e01

Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle, ASTM B962-15, ASTM International, 2015. https://doi.org/10.1520/b0962-15

G. S. Upadhyaya, Powder metallurgy technology, 1st ed., Cambridge, UK: Cambridge International Science Publishing, 2002.

S. Ali et al., “Investigation of alloy composition and sintering parameters on the corrosion resistance and microhardness of 316L stainless steel alloy,” in Advances in Manufacturing II: Lecture Notes in Mechanical Engineering, B. Gapiński, M. Szostak, and V. Ivanov, Eds., Cham, Germany: Springer, 2019, pp. 532-541. https://doi.org/10.1007/978-3-030-16943-5_45

A.-M. Bandar, “Powder metallurgy of stainless steel: State of the art, challenges and development,” in Stainless Steel, A. Pramanik and A. K. Basak, Eds., Jubail, Saudi Arabia: Nova Science Publishers, 2015, pp. 37-80.

T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112-224, Mar. 2018. https://doi.org/10.1016/j.pmatsci.2017.10.001

Standard test method for Knoop and Vickers hardness of materials, ASTM E 384-11, ASTM International, 2011. https://doi.org/10.1520/e0384-10e02

Standard test method for wear testing with a pin-on-disk apparatus, ASTM G99-17, ASTM International, 2017. https://doi.org/10.1520/g0099-05

Standard practice for conventions applicable to electrochemical measurements in corrosion testing, ASTM G3-89, ASTM International, 2010. https://doi.org/10.1520/g0003

Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements, ASTM G5-94, ASTM International, 2011. https://doi.org/10.1520/g0005-14e01

Standard test method for conducting potentiodynamic polarization resistance measurements, ASTM G59-97, ASTM International, 2020. https://doi.org/10.1520/g0059-97r14

Standard practice for calculation of corrosion rates and related information from electrochemical measurements, ASTM G102-89, ASTM International, 2015. https://doi.org/10.1520/g0102-89r15e01

A. F. Padilha et al., “Stainless steel heat treatment,” in Encyclopedia of Iron, Steel, and Their Alloys (Online Version), Taylor & Francis Group, 1st Edition, 2016, pp. 1–28.

X. Q. Chen, W. Wolf, R. Podloucky, and P. Rogl, “Ab initio study of ground-state properties of the Laves phase compounds TiCr2, ZrCr2, and HfCr2,” Phys. Rev. B Condens. Matter Mater. Phys., vol. 71, art. 174101, 2005. https://doi.org/10.1103/PhysRevB.71.174101

How to Cite

APA

Cañas Mendoza, L. A., Pineda-Triana , Y., and Mujica Roncery , L. (2023). Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel. Ingeniería, 28(3), e19867. https://doi.org/10.14483/23448393.19867

ACM

[1]
Cañas Mendoza, L.A. et al. 2023. Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel. Ingeniería. 28, 3 (Oct. 2023), e19867. DOI:https://doi.org/10.14483/23448393.19867.

ACS

(1)
Cañas Mendoza, L. A.; Pineda-Triana , Y.; Mujica Roncery , L. Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel. Ing. 2023, 28, e19867.

ABNT

CAÑAS MENDOZA, Luz Adriana; PINEDA-TRIANA , Yaneth; MUJICA RONCERY , Lais. Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel. Ingeniería, [S. l.], v. 28, n. 3, p. e19867, 2023. DOI: 10.14483/23448393.19867. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/19867. Acesso em: 28 nov. 2023.

Chicago

Cañas Mendoza, Luz Adriana, Yaneth Pineda-Triana, and Lais Mujica Roncery. 2023. “Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel”. Ingeniería 28 (3):e19867. https://doi.org/10.14483/23448393.19867.

Harvard

Cañas Mendoza, L. A., Pineda-Triana , Y. and Mujica Roncery , L. (2023) “Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel”, Ingeniería, 28(3), p. e19867. doi: 10.14483/23448393.19867.

IEEE

[1]
L. A. Cañas Mendoza, Y. Pineda-Triana, and L. Mujica Roncery, “Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel”, Ing., vol. 28, no. 3, p. e19867, Oct. 2023.

MLA

Cañas Mendoza, Luz Adriana, et al. “Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel”. Ingeniería, vol. 28, no. 3, Oct. 2023, p. e19867, doi:10.14483/23448393.19867.

Turabian

Cañas Mendoza, Luz Adriana, Yaneth Pineda-Triana, and Lais Mujica Roncery. “Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel”. Ingeniería 28, no. 3 (October 19, 2023): e19867. Accessed November 28, 2023. https://revistas.udistrital.edu.co/index.php/reving/article/view/19867.

Vancouver

1.
Cañas Mendoza LA, Pineda-Triana Y, Mujica Roncery L. Study Of the Effect of Titanium Additions on The Mechanical and Corrosion Properties of AISI 316 Powder Metallurgical Steel. Ing. [Internet]. 2023 Oct. 19 [cited 2023 Nov. 28];28(3):e19867. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/19867

Download Citation

Visitas

18

Dimensions


PlumX


Downloads

Download data is not yet available.
Loading...