Evaluación del Apantallamiento Electromagnético del Concreto a partir de Simulaciones en Alta Frecuencia y la Aplicación del modelo de Jonscher

Evaluation of the Electromagnetic Shielding of Concrete from HighFrequency Simulations and the Application of the Jonscher Model

Palabras clave: electromagnetic shielding, complex electrical properties, concrete, Jonscher electromagnetic model (en_US)
Palabras clave: apantallamiento electromagnético, concreto, modelo electromagnético de Jonscher, propiedades eléctricas complejas (es_ES)

Resumen (es_ES)

Contexto: Este artículo analiza la efectividad de apantallamiento electromagnético de varias estructuras de concreto en función de la variación del grosor y el contenido o nivel de humedad (NH) para un rango de frecuencias definido.

Método: El estudio se fundamenta en la implementación de simulaciones en dos dimensiones (2D) usando un software basado en el método de elementos finitos (FEM) y se desarrolló a partir de un conjunto de valores obtenidos de la aplicación de modelos matemáticos para medios dieléctricos. Inicialmente, se caracterizan las propiedades eléctricas complejas de las estructuras (permitividad dieléctrica y conductividad) aplicando el modelo matemático de Jonscher de tres variables. Posteriormente, se evalúan dichas propiedades sobre diferentes estructuras de concreto para un rango de frecuencias determinado.

Resultados: Se observó que el blindaje electromagnético ofrecido por el concreto aumenta cuando se incrementa el NH y el grosor de las estructuras. Adicionalmente, las pruebas evidencian que las pérdidas de energía por absorción son mayores en comparación con los demás tipos de pérdidas analizadas en el estudio.

Conclusiones: Luego de la investigación se puede afirmar que modelo electromagnético de Jonscher ofrece una buena respuesta al ser aplicado a las propiedades eléctricas complejas del concreto en un rango de frecuencia desde 250 MHz hasta 700 MHz. Asimismo, al variar el grosor y el NH en las estructuras analizadas, se evidenció un aumento en la efectividad de apantallamiento electromagnético total. Debido a que el concreto es un medio dieléctrico imperfecto, las pérdidas de energía por reflexión son bajas comparadas con las pérdidas de absorción y de múltiples reflexiones. Aun así, este material estructural puede ser usado como apantallamiento natural contra perturbaciones electromagnéticas radiadas en la banda de UHF.

Agradecimientos: Este trabajo fue posible gracias al soporte y asesoría del Grupo de compatibilidad e interferencia electromagnética (GCEM-UD) de la Universidad Distrital Francisco José de Caldas.

Resumen (en_US)

Context: This paper analyzes the effectiveness of electromagnetic shielding of several concrete structures based on the variation of the thickness and the content or level of humidity (NH) for a defined frequency range.

Method: The study is based on the implementation of simulations in two dimensions (2D) using a software based on the finite element method (FEM) and it was developed from a set of values obtained from the application of mathematical models for dielectric media. Initially, the complex electrical properties of the structures (dielectric permittivity and conductivity) are characterized by applying the Jonscher´s mathematical model of three variables. Subsequently, these properties are evaluated with different concrete structures for a specific frequency range.

Results: It is observed that the electromagnetic shielding offered by the concrete increases when the NH and the thickness of the structures are increased. Additionally, the evidencesshow that energy losses due to absorption are greater compared to the other types of losses analyzed in the study

Conclusions: After the investigation, it can be affirmed that the Jonscher electromagnetic model offers a good response when it is applied to the complex electrical properties of concrete in a frequency range from 250 MHz up to 700 MHz. Also, by varying the thickness and the humidity level in the structures analyzed, an increase in the effectiveness of the total electromagnetic shielding was evidenced. Because concrete is an imperfect dielectric medium, energy losses by reflection are low compared to absorption losses and losses due to multiple reflections. However, this structural material can be used as a natural shield against radiated electromagnetic disturbances in the UHF band.

Acknowledgements: This work was made possible thanks to the support and advice of the Electromagnetic compatibility and interference research group (GCEM-UD) of the Universidad Distrital Francisco José de Caldas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Camilo Alejandro Granados, Universidad Nacional de Colombia

Magíster en Ingeniería Eléctrica de la Universidad Nacional de Colombia; Ingeniero eléctrico de la Universidad Distrital Francisco José de Caldas. Investigador del Grupo de investigación en compatibilidad electromagnética (EMC-UN), Bogotá – Colombia. Líneas de interés: compatibilidad electromagnética, campos electromagnéticos aplicados y descargas eléctricas atmosféricas.

Herbert Enrique Rojas Cubides, Universidad Distrital Francisco José de Caldas

Profesor Asistente

Proyecto Curricular de Ingeniería Eléctrica

Francisco Santamaria

Doctor en Ingeniería – Ingeniería Eléctrica de la Universidad Nacional de Colombia; Magíster en Ingeniería Eléctrica de la Universidad Nacional de Colombia; Ingeniero Electricista de la Universidad Nacional de Colombia. Profesor Titular de la Universidad Distrital Francisco José de Caldas. Profesor-investigador del Grupo de investigación sistemas eléctricos y eficiencia energética (GISE3-UD), Bogotá – Colombia. Líneas de interés: compatibilidad electromagnética, gestión de la energía, eficiencia energética, planeamiento energético en comunidades rurales y vehículos eléctricos.

Referencias

International Electrotechnical Commission IEC, International standard IEC 61000 1-1, Electromagnetic compatibility (EMC) - Part 1-1: General - Application and interpretation of fundamental definitions and terms. Suiza, 2000.

M. Kaur, S. Kakar, and D. Mandal, “Electromagnetic interference,” IEEE Int. Conf. Electron. Comput. Technol., vol. 4, pp. 1–5, Apr. 2011. DOI: 10.1109/ICECTECH.2011.5941844

A. Keshtkar, A. Maghoul, and A. Kalantarnia, “Investigation of Shielding Effectiveness Caused by Incident Plane Wave on Conductive Enclosure in UHF Band,” IEEE Int. Conf. Mech. Aerosp. Eng., vol. 110, pp. 485–490, Jul. 2010. DOI: 10.4028/www.scientific.net/AMM.110-116.940

G. Antonini, A. Orlandi, and D. Stefano, “Shielding Effects of Reinforced Concrete Structures to Electromagnetic Fields due to GSM and UMTS Systems,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1582–1585, May 2003. DOI: 10.1109/TMAG.2003.810327

M. Romanca, P. Ogruţan, L. Aciu, and G. Nicolae, “Methods of Investigating Construction Materials used for Intelligent Building Shielding,” IEEE Int. Conf. Optim. Electr. Electron. Equip., vol. 1, pp. 191–196, May 2008. DOI: 10.1109/OPTIM.2008.4602520

A. Ogunsola, U. Reggiani, and L. Sandrolini, “Shielding properties of conductive concrete against transient electromagnetic disturbances,” IEEE Int. Conf. Microwaves, Commun. Antennas Electron. Syst., vol. 1, pp. 1–5, Nov. 2009. DOI: 10.1109/COMCAS.2009.5385975

S. Y. Hyun et al., “Analysis of shielding effectiveness of reinforced concrete against high-altitude electromagnetic pulse,” IEEE Trans. Electromagn. Compat., vol. 56, no. 6, pp. 1488–1496, 2014. DOI: 10.1109/TEMC.2014.2322911

A. A. Emelyanenko, J. H. Doh, H. G. Espinosa, and D. V. Thiel, “Microwave measurements in cured concrete - Experiment and modelling,” 2018 Aust. Microw. Symp. AMS 2018 - Conf. Proc., vol. 2018-January, pp. 67–68, 2018. DOI: 10.1109/AUSMS.2018.8346985

H. Guan, S. Liu, Y. Duan, and J. Cheng, “Cement based electromagnetic shielding and absorbing building materials,” Cem. Concr. Compos., vol. 28, no. 5, pp. 468–474, May 2006. DOI: 10.1016/j.cemconcomp.2005.12.004

A. Ogunsola, U. Reggiani, and L. Sandrolini, “Modelling shielding properties of concrete,” IEEE Int. Zurich Symp. Electromagn. Compat., pp. 34–37, Mar. 2006. DOI: 10.1109/EMCZUR.2006.214862

A. Ogunsola, U. Reggiani, and L. Sandrolini, “Shielding effectiveness of concrete buildings,” IEEE Int. Symp. Electromagn. Compat. Electromagn. Ecol., pp. 65–68, 2005. DOI: 10.1109/EMCECO.2005.1513064

L. Sandrolini, U. Reggiani, and A. Ogunsola, “Modelling the electrical properties of concrete for shielding effectiveness prediction,” J. Phys. D. Appl. Phys., vol. 40, no. 17, pp. 5366–5372, Sep. 2007. DOI: 10.1088/0022-3727/40/17/053

A. Mazzoli et al., “Effect of graphene oxide and metallic fibers on the electromagnetic shielding effect of engineered cementitious composites,” J. Build. Eng., vol. 18, pp. 33–39, 2018. DOI: 10.1016/j.jobe.2018.02.019

S. Laurens, J. Balayssac, J. Rhazi, G. Klysz, and G. Arliguie, “Non destructive evaluation of concrete moisture by GPR technique: experimental study and direct modeling,” Mater. Struct., vol. 38, no. 9, pp. 827–832, 2003. DOI: 10.1007/BF02481655

D. Askeland, Ciencia e Ingenieria de los Materiales. USA, New York, 1998.

M. Soutsos, J. Bungey, S. Millard, M. Shaw, and A. Patterson, “Dielectric properties of concrete and their influence on radar testing,” NDT E Int., vol. 34, no. 6, pp. 419–425, Sep. 2001. DOI: 10.1016/S0963-8695(01)00009-3

A. Robert, “Dielectric permittivity of concrete between 50 Mhz and 1 Ghz and GPR measurements for building materials evaluation,” J. Appl. Geophys., vol. 40, no. 1–3, pp. 89–94, Oct. 1998. DOI: 10.1016/S0926-9851(98)00009-3

A Shaari, S. Millard, and J. Bungey, “Measurement of Radar Properties of Concrete for in Situ Structural Elements,” Insight - NonDestructive Testing and Condition Monitoring, vol. 44, no. 12, pp. 756–758, 2002. [19] B. Feitor, R. Caldeirinha, T. Fernandes, D. Ferreira, and N. Leonor, “Estimation of Dielectric Concrete Properties from Power Measurements at 18 . 7 and 60 GHz,” Leiria, Portugal, 2011. DOI: 10.1109/LAPC.2011.6114146

H. Kim, M. G. Min, and K. H. Lee, “Estimation of Dielectric Properties of Concrete Using Backward Tracing (ITC CSCC 2019),” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, no. 1, 2019. DOI: 10.1109/ITC-CSCC.2019.8793378

H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett., vol. 464, no. 4–6, pp. 166 170, Oct. 2008. DOI: 10.1016/j.cplett.2008.09.015

D. Micheli et al., “Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 188, pp. 119–129, 2014. DOI: 10.1016/j.mseb.2014.07.001

K. Pokkuluri, “Effect of Admixtures , Chlorides , and Moisture on Dielectric Properties of Portland Cement Concrete in the Low Microwave Frequency Range,” Ph.D. dissertation, Civil Eng. Dept.,Virginia Polytechnic Institute and State University, Blacksburg, VA, 1998.

A. K. Jonscher, “Dielectric relaxation in solids,” IOP Publ., vol. 57, no. 5, pp. 57–58, 1999. https://doi.org/10.1088/0022-3727/32/14/201

V. I. Gaiduk, Dielectric Relaxation and Dinamics of Polar Molecules. New York, USA: World Scientific Publishing Co. Pte. Ltd, 1999. https://doi.org/10.1142/2619

A. Jonscher, “The ‘Universal’ Dielectric Reponse: Part I,” IEEE Electr. Insul. Mag., vol. 6, no. 2, pp. 16–22, May 1990. DOI: 10.1109/57.50801

A. Jonscher, “The ‘Universal’ Dielectric Reponse: Part II,” IEEE Electr. Insul. Mag., vol. 6, no. 3, pp. 24–28, May 1990. DOI: 10.1109/57.55287

A. Jonscher, “The ‘Universal’ Dielectric Reponse: Part III,” IEEE Electr. Insul. Mag., vol. 6, no. 4, pp. 19–24, May 1990. DOI: 10.1109/57.63055

C. Achedad and L. Giménez, Ingeniería de organización: Modelos y aplicaciones. Madrid, España, 2008.

B. Render, Principios de administración de operaciones. Seguin, USA, 2004.

K. Chahine, A. Ihamouten, V. Baltazart, G. Villain, and X. Derobert, “On the variants of Jonscher’s model for the electromagnetic characterization of concrete,” IEEE Int. Conf. Gr. Penetrating Radar, no. 9, pp. 1–6, Jun. 2009. DOI: 10.1109/ICGPR.2010.5550083

G. Villain, A. Ihamouten, and X. Dérobert, “Use of Frequency Power Law to Link the Results of Two EM Testing Methods for the Characterization of Humid Concretes,” Proceed. 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Nantes, Francia, 2011. DOI: 10.1109/IWAGPR.2011.5963901

A. Ihamouten, K. Chahine, V. Baltazart, G. Villain, and X. Dérobert, “On Variants of the Frequency Power Law for the Electromagnetic Characterization of Hydraulic Concrete,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 11, pp. 3658–3668, 2011. DOI: 10.1109/TIM.2011.2138210

J. Hernández, Teoría de líneas de trasmisión e ingeniería de microondas. Mexicali, México, 1999.

J. Colombo, “Análisis y mediciones de los parámetros de dispersión o Scattering parameters en un cuadripolo o en una red de n puertos (multipolo),” Universidad tecnológica nacional, San Miguel, Argentina, 2012.

O. Galao, “Matrices cementicias multifuncionales mediante adición de nanofibras de carbono,” Universidad de Alicante, 2012.

P. Saini, V. Choudhary, B. Singh, R. Mathur, and S. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys., vol. 113, no. 2–3, pp. 919–926, Feb. 2009. DOI: 10.1016/j.matchemphys.2008.08.065

V. Choudhary, S. Dhawan, and P. Saini, “Polymer based nanocomposites for electromagnetic interference ( EMI ) shielding,” Indian Inst. Technol., vol. 661, no. 2, 2012.

B. Singh, V. Choudhary, P. Saini, and R. Mathur, “Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding,” AIP Adv., vol. 2, no. 2, 2012. DOI: 10.1063/1.4730043

P. Saini, V. Choudhary, B. Singh, R. Mathur, and S. Dhawan, “Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0GHz range,” Synth. Met., vol. 161, no. 15–16, pp. 1522–1526, Aug. 2011. DOI: 10.1016/j.synthmet.2011.04.033

S. Anoop, A. Singh, P. Saini, F. Khatoon, and S. Dhawan, “Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3,” J. Mater. Sci., vol. 47, no. 5, pp. 2461 2471, Nov. 2011. DOI: 10.1007/s10853-011-6068-5.

H. Kim et al., “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Appl. Phys. Lett., vol. 84, no. 4, p. 589, 2004. DOI: 10.1063/1.1641167

G. Guzman, “Verificación de efectividad de blindaje electromagnético por teorema se reciprocidad,” Universidad Autónoma de Nuevo León, Monterrey, México, 1992.

D. Chung, “Materials for Electromagnetic Interference Shielding,” Mater. Eng. Perform., vol. 9, no. 5, pp. 350 354, 2000. DOI: 10.1361/105994900770346042

COMSOL, “Meshing Considerations for Linear Static Problems,” 2013. https://www.comsol.com/blogs/meshing-considerations-linearstatic-problems/

COMSOL Multiphysics, Introduction to COMSOL Multiphysics, Version 4.3b. U.S, 2013.

R. Dalke, C. Holloway, P. McKenna, M. Johansson, and A. Ali, “Effects of Reinforced Concrete Structures on RF Comunications,” IEEE Trans. Electromagn. Compat., vol. 42, no. 4, pp. 486–496, Nov. 2000. DOI: 10.1109/15.902318

R. Haddad and I. Al-Qadi, “Characterization of portland cement concrete using electromagnetic waves over the microwave frequencies,” Elsevier Sci. Ltd, vol. 28, no. 10, pp. 1379–1391, May 1998. DOI: 10.1016/S0008 8846(98)00076-3

H. Rhim and O. Buyukozturk, “Electromagnetic Properties of Concrete at Microwave Frequency Range,” ACI Mater., vol. 95, no. 3, pp. 262–271, May 1998. https://doi.org/10.14359/370 [50] L. Hemming, Architectural Electromagnetic Shielding Handbook: A Design and Specification Guide. Willey-IEEE Press, USA, New York: IEEE The institute of Electrical and Engineer, 2000. https://doi.org/10.1109/9780470544181

S. Celozzi, R. Araneo, and G. Lovat, Electromagnetic Shielding. Wiley-IEEE Press, Italy, Roma, 2008. https://doi.org/10.1002/9780470268483

Cómo citar
Granados Vivas, C. A., Cubides, H. E. R., & Santamaria Piedrahita, F. (2020). Evaluación del Apantallamiento Electromagnético del Concreto a partir de Simulaciones en Alta Frecuencia y la Aplicación del modelo de Jonscher. Ingeniería, 25(2). https://doi.org/10.14483/23448393.15611
Publicado: 2020-07-03
Sección
Ingeniería Eléctrica y Electrónica

Artículos más leídos del mismo autor/a