DOI:

https://doi.org/10.14483/23448393.18453

Published:

2022-08-19

Issue:

Vol. 27 No. 3 (2022): September-December

Section:

Mechanical Engineering

Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan

On Determining the Stress Intensity Factor Range Threshold and the Factors that Affect It

Authors

  • Kebin Alberto Medina Bernal Universidad Tecnológica de Pereira
  • Libardo Vicente Vanegas Useche Facultad de Ingeniería Mecánica, Universidad Tecnológica de Pereira https://orcid.org/0000-0002-5891-8696

Keywords:

crack closure, load ratio, microstructure (en).

Keywords:

cierre de grieta, relación de carga, microestructura (es).

Abstract (es)

Contexto: El umbral del rango del factor de intensidad de tensiones (ΔKth) es un valor por debajo del cual la propagación de grietas de fatiga es insignificante. Este suele usarse para establecer la vida a fatiga de un elemento ingenieril. Sin embargo, su determinación, la forma en que diferentes factores influyen en su valor y su aplicación aún son temas de discusión.

Método: Este trabajo discute sobre los métodos y criterios existentes para la determinación de ΔKth y los factores que lo afectan.

Resultados: Los métodos experimentales estándar ASTM son los ensayos más usados. Sin embargo, estos pueden resultar inexactos, pues los ensayos de preagrietamiento a compresión pueden producir resultados conservativos. Recientemente se han propuesto muchos métodos analíticos y numéricos para determinar el umbral. Muchos factores y variables afectan el valor de ΔKth, tales como el cierre de grieta, la geometría, el tamaño de la grieta, las características de la carga, la microestructura, las propiedades del material, el ambiente, las tensiones residuales y las cargas de modo mixto.

Conclusiones: El umbral puede determinarse mediante ensayos estándar ASTM o métodos teóricos o numéricos. Se ha avanzado mucho en este campo, pero se requiere más investigación para mejorar los métodos experimentales y obtener métodos analíticos o numéricos que capturen más integralmente las diferentes complejidades, factores y variables que afectan el umbral.

Abstract (en)

Context: The stress intensity factor range threshold (ΔKth) is a value below which fatigue crack propagation is insignificant. This factor is usually employed to establish the fatigue life of an engineering element. However, its determination, the way in which the different factors influence its value, and its application are still subjects of discussion.

Method: This paper discusses the methods and criteria for determining ΔKth and the factors that affect it.

Results: Standard ASTM experimental methods are the most used tests. However, they may prove to be inaccurate, since compression pre-cracking tests can yield conservative results. In recent years, many sound analytical and numerical methods for the determination of the threshold have been proposed. Many factors and variables can affect the value of ΔKth, such as crack closure, geometry, crack size, load characteristics, microstructure, material properties, environment, residual stresses, and mixed-mode loads.

Conclusions: The threshold can be determined via standard ASTM tests or theoretical or numerical methods. Much progress has been made in this field, but more research is required to improve experimental methods and obtain analytical or numerical methods that more comprehensively capture the different complexities, factors, and variables that affect the threshold.

Author Biographies

Kebin Alberto Medina Bernal, Universidad Tecnológica de Pereira

Ingeniero Mecánico de la Universidad Tecnológica de Pereira (Colombia).

Libardo Vicente Vanegas Useche, Facultad de Ingeniería Mecánica, Universidad Tecnológica de Pereira

Ingeniero Mecánico de la Universidad Tecnológica de Pereira (Colombia). Magíster en Tecnología de Fabricación y Gestión de Sistemas Avanzadas de la Universidad de Manchester (Reino Unido). Doctor en Ingeniería Mecánica de la Universidad de Surrey (Reino Unido). Profesor Titular en la Facultad de Ingeniería Mecánica de la Universidad Tecnológica de Pereira e integrante del grupo de investigación “Procesos de Manufactura y Diseño de Máquinas” de la misma universidad.

References

ASME, “Article KD-4, Fracture Mechanics Evaluation”, Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Pressure Vessels, Division 3, New York, American Society of Mechanical Engineers, 2019.

British Standard, Guide to Methods for Assessing the Acceptability of Flaw in Metallic Structures, BS 7910, London, The British Standard Institution, 2019.

C. A. Cabrera Arias, F. S. Garay Rairan, I. Arango Calderón y Ó. E. Gómez Vargas, “Design of a troubleshooting digital test bench for the beechcraft king C-90, 200, B200, 300 and 350 aircraft GCU”, Ingeniería, vol. 25, no. 3, pp. 393-409, 2020. https://doi.org/10.14483/23448393.16903

S. Rodríguez Pulecio, J. J. Coronado Marín y N. Arzola de la Peña, “Mecánica de la fractura aplicada a ejes de molinos de caña de azúcar”, Ingeniería, vol. 10, no. 2, pp. 23-29, 2005. https://doi.org/10.14483/23448393.2713

U. Zerbst et al., “Fatigue and fracture of weldments”, in Fatigue and Fracture of Weldments. Springer, 2018. https://doi.org/10.1007/978-3-030-04073-4_1

K. J. Miller, “The behaviour of short fatigue cracks and their initiation part I - A review of two recent books”, Fat. Frac. Eng. Mater. Struct., vol. 10, no. 1, pp. 75-91, 1987. https://doi.org/10.1111/j.1460-2695.1987.tb01150.x

M. Su, L. Xu, C. Peng, Y. Han, and L. Zhao, “Fatigue short crack growth, model and EBSD characterization of marine steel welding joint”, Int. J. Fatigue, vol. 156, 2022. https://doi.org/10.1016/j.ijfatigue.2021.106689

K. Hasegawa, D. Dvořák, V. Mareš, B. Strnadel, and S. Usami, “Suitability of fatigue crack growth thresholds at negative stress ratios for ferritic steels and aluminum alloys in flaw evaluation procedures”, Eng. Fract. Mech., vol. 248, 2021. https://doi.org/10.1016/j.engfracmech.2021.107670

D. Taylor, A Compendium of Fatigue Thresholds and Growth Rates, London, Engineering Materials Advisory Services, 1985.

U. Zerbst, M. Vormwald, R. Pippan, H.-P. Gänser, C. Sarrazin-Baudoux, and M. Madia, “About the fatigue crack propagation threshold of metals as a design criterion - A review”, Eng. Fract. Mech., vol. 153, pp. 190-243, 2016. https://doi.org/10.1016/j.engfracmech.2015.12.002

ASTM, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E647-15e1, West Conshohocken, PA, ASTM International, 2015.

L. P. Pook, “Mixed-mode fatigue crack growth thresholds: a personal historical review of work at the National Engineering Laboratory, 1975-1989”, Eng. Fract. Mech., vol. 187, pp. 115-141, 2018. https://doi.org/10.1016/j.engfracmech.2017.10.028

J. M. Barsom, “Fatigue behavior of pressure-vessel steels”, WRC Bulletin, 194, New York, The Welding Research Council, 1974.

A. Hobbacher, Recommendations for Fatigue Design of Welded Joints and Components, document XIII-2151-07 / XV 1254-07, Paris, International Institute of Welding, 2007.

G. Marci, “Determination of the partitioning point dividing ΔK into ΔKeff”, Eng. Fract. Mech., vol. 53, no. 1, pp. 23-36, 1996. https://doi.org/10.1016/0013-7944(95)00082-7

S. C. Forth, J. C. Newman, and R. G. Forman, “Generating fatigue crack growth thresholds with constant amplitude loads”, Fatigue 2002, pp. 2337-2344 , 2002.

D. J. Bang, and A. Ince, “A short and long crack growth model based on 2-parameter driving force and crack growth thresholds”, Int. J. of Fatigue, vol. 141, 2020. https://doi.org/10.1016/j.ijfatigue.2020.105870

J. C. Newman, “A review of modelling small-crack behavior and fatigue-life predictions for aluminum alloys”, Fat. Fract. Eng. Mater. Struct., vol. 17, no. 4, pp. 429-439, 1994. https://doi.org/10.1111/j.1460-2695.1994.tb00242.x

D. Leonetti, J. Maljaars, and H. H. Snijder, “Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimation”, Eng. Fract. Mech., vol. 242, 2021. https://doi.org/10.1016/j.engfracmech.2020.107487

K. Sadananda, A. Arcari, and A. K. Vasudevan, “Does a nucleated crack propagate?”, Eng. Fract. Mech., vol. 176, pp. 144-160, 2017. https://doi.org/10.1016/j.engfracmech.2017.02.003

A. K. Vasudevan, K. Sadanada, and N. Louat, “A review of crack closure, fatigue crack threshold and related phenomena”, Mater. Sci. Eng. A, vol. 188, no. 1-2, pp. 1-22, 1994. https://doi.org/10.1016/0921-5093(94)90351-4

A. H. Noroozi, G. Glinka, and S. Lambert, “A two parameter driving force for fatigue crack growth analysis”, Int. J. Fatigue, vol. 27, no. 10-12, pp. 1277-1296, 2005. https://doi.org/10.1016/j.ijfatigue.2005.07.002

A. H. Noroozi, G. Glinka, and S. Lambert, “A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force”, Int. J. Fatigue, vol. 29, no. 9-11, pp.1616-1633, 2007. https://doi.org/10.1016/j.ijfatigue.2006.12.008

D. J. Bang, A. Ince, and L. Q. Tang, “A modification of UniGrow 2-parameter driving force model for short fatigue crack growth”, Fat. Fract. Eng. Mater. Struct., vol. 42, no.1, pp. 45-60, 2019. https://doi.org/10.1111/ffe.12865

D. J. Bang, A. Ince, and M. Noban, “Modeling approach for a unified crack growth model in short and long fatigue crack regimes”, Int. J. Fatigue, vol. 128, 2019. https://doi.org/10.1016/j.ijfatigue.2019.06.042

H. Kitagawa, and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stages”, Proceedings of 2nd International Conference on Mechanical Behavior of Materials, pp. 627-631, 1976.

B. Atzori, and P. Lazzarin, “Notch sensitivity and defect sensitivity under fatigue loading: Two sides of the same medal”, Int. J. Fract., vol. 107, pp. 1-8, 2001. https://doi.org/10.1023/A:1007686727207

B. Atzori, and P. Lazzarin, “A three-dimensional graphical aid to analyze fatigue crack nucleation and propagation phases under fatigue limit conditions”, Int. J. Fract., vol. 118, no. 3, pp. 271-284, 2002. https://doi.org/10.1023/A:1022965909483

M. N. James, C. J. Christopher, Y. Lu, and E. A. Patterson, “Local crack plasticity and its influences on the global elastic stress field”, Int. J. Fatigue, vol. 46, pp. 4-15, 2013. https://doi.org/10.1016/j.ijfatigue.2012.04.015

R. O. Ritchie, “Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding”, Mater. Sci. Eng.: A, vol. 103, no. 1, pp. 15-28, 1988. https://doi.org/10.1016/0025-5416(88)90547-2

R. Pippan, and A. Hohenwarter, “Fatigue crack closure: A review of the physical phenomena”, Fat. Fract. Eng. Mater. Struct., vol. 40, no. 4, pp. 471-495, 2017. https://doi.org/10.1111/ffe.12578

H. J. Schindler, “On the significance of crack tip shielding in fatigue threshold— Theoretical relations and experimental implications”, in J. C. Newman, and R. S. Piascik (Eds.), Fatigue Crack Growth Thresholds, Endurance Limits, and Design, ASTM International, 2000. https://doi.org/10.1520/stp13425s

R. Pippan, “The effective threshold of fatigue crack propagation in aluminium alloys. I. The influence of yield stress and chemical composition”, Phil. Magazine A, vol. 77, no. 4, pp. 861-873, 1998. https://doi.org/10.1080/01418619808221216

K. J. Miller, “Materials science perspective of metal fatigue resistance”, Mater. Sci. Tech., vol. 9, no. 6, pp. 453-462, 1993. https://doi.org/10.1179/mst.1993.9.6.453

C. Santus, and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue”, Int. J. Fatigue, vol. 31, no. 8-9, pp. 1356-1365, 2009. https://doi.org/10.1016/j.ijfatigue.2009.03.002

U. Zerbst, and M. Madia, “Fracture mechanics based assessment of the fatigue strength: Approach for the determination of the initial crack size”, Fat. Fract. Eng. Mater. Struct., vol. 38, no. 9, pp. 1066-1075, 2015. https://doi.org/10.1111/ffe.12288

X. Cai, R. Xia, M. Huo, and J. Xu, “A threshold formula for fatigue crack growth with mean stress intensity factors”, Int. J. Mech. Sci., vol. 135, pp. 639-645, 2018. https://doi.org/10.1016/j.ijmecsci.2017.12.014

D. Kujawski, and F. Ellyin, “A unified approach to mean stress effect on fatigue threshold conditions”, Int. J. Fatigue, vol. 17, no. 2, pp. 101-106, 1995. https://doi.org/10.1016/0142-1123(95)95888-n

D. N. Lal, and T. K. G. Namboodhiri, “A model for the effect of mean stress on the threshold condition for fatigue crack propagation”, Mater. Sci. Eng.: A, vol. 130, no. 1, pp.37-49, 1990. https://doi.org/10.1016/0921-5093(90)90079-i

V. Kloster, H. A. Richard, and G. Kullmer, “Experimental characterization of the threshold and fatigue crack growth behaviour regarding negative stress ratios”, Ann. Nuclear Energy, vol. 40, no. 1, pp. 14-24, 2013.

K. Walker, “The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum”, in M. S. Rosenfeld (Ed.), Effect of Environment and Complex Load History on Fatigue Life, ASTM International, 1970. https://doi.org/10.1520/stp32032s

T. Mann, “The influence of mean stress on fatigue crack propagation in aluminum alloys”, Int. J. Fatigue, vol. 29, no. 8, pp. 1393-1401, 2007. https://doi.org/10.1016/j.ijfatigue.2006.11.010

V. M. Radhakrishan, “Endurance diagram”, Int. J. Fatigue, vol. 12, no. 6, pp. 513-517, 1990. https://doi.org/10.1016/0142-1123(90)90224-3

H. Döker, “Fatigue crack growth threshold: Implications, determination and data evaluation”, Int. J. Fatigue, vol. 19, no. 93, pp. 145-149, 1997. https://doi.org/10.1016/s0142-1123(97)00058-3

R. Schmidt, and P. Paris, “Threshold for fatigue crack propagation and the effects of load ratio and frequency”, in J. Kaufman, J. Swedlow, H. Corten, J. Srawley, R. Heyer, E. Wessel, and G. Irwin (Eds.), Progress in Flaw Growth and Fracture Toughness Testing, ASTM International, 1973. https://doi.org/10.1520/stp49638s

Z. Chen, The Effect of R Ratio and Temperature on Fatigue Crack Growth Threshold of Power Plant Steels, Doctoral Thesis, ETH, Zurich, 2018. https://doi.org/10.3929/ethz-b-000274863

Y. Yamada, and J. C. Newman Jr, “Crack closure under high load-ratio conditions for Inconel-718 near threshold behavior”, Eng. Fract. Mech., vol. 76, no. 2, pp. 209-220, 2009. https://doi.org/10.1016/j.engfracmech.2008.09.009

J. A. Newman, W. T. Riddell, and R S. Piascik, “Effects of Kmax on fatigue crack growth threshold in aluminum alloys”, in J. C. Newman, and R. S. Piascik (Eds.), Fatigue Crack Growth Thresholds, Endurance Limits, and Design, ASTM International, 2000. https://doi.org/10.1520/stp13426s

J. A. Newman, The Effects of Load Ratio on Threshold Fatigue Crack Growth of Aluminum Alloys, Ph.D. Dissertation, Virginia Tech., 2000. https://vtechworks.lib.vt.edu/handle/10919/29418

B. L. Boyce, and R. O. Ritchie, “Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4V”, Eng. Fract. Mech., vol. 68, no. 2, pp. 129-147, 2001. https://doi.org/10.1016/s0013-7944(00)00099-0

M.-L. Zhu, F.-Z. Xuan, and S.-T. Tu., “Effect of load ratio on fatigue crack growth in the nearthreshold regime: A literature review, and a combined crack closure and driving force approach”, Eng. Fract. Mech., vol. 141, pp. 57-77, 2015. https://doi.org/10.1016/j.engfracmech.2015.05.005

R. Sunder, “Why and how residual stress affects metal fatigue”, Advanced Materials Springer Proceedings in Physics, vol. 175, 2016. https://doi.org/10.1007/978-3-319-26324-3_34

J. W. Sheldon, K. R. Bain, and J. K. Donald, “Investigation of the effects of shed-rate, initial Kmax, and geometric constraint on ΔKth in Ti-6Al-4V at room temperature”, Int. J. Fatigue, vol. 21, no. 7, pp. 733-741, 1999. https://doi.org/10.1016/s0142-1123(99)00037-7

I. Verpoest, E. Aernoudt, A. Deruyttere, and M. De Bondt, “The fatigue threshold, surface condition and fatigue limit of steel wire”, Int. J. Fatigue, vol. 7, no. 4, pp. 199-214, 1985. https://doi.org/10.1016/0142-1123(85)90051-9

R. C. McClung, “Analysis of fatigue crack closure during simulated threshold testing”, in J. C. Newman, and R. S. Piascik (Eds.), Fatigue Crack Growth Thresholds, Endurance Limits, and Design, ASTM International, 2000. https://doi.org/10.1520/stp13435s

T. H. Topper, and M. T. Yu, “The effect of overloads on threshold and crack closure”, Int. J. of Fatigue, vol. 7, no. 3, pp. 159-164, 1985. https://doi.org/10.1016/0142-1123(85)90027-1

H. A. Richard, and M. Sander, Fatigue Crack Growth, Berlin, Springer, 2016.

R. W. Hertzberg, “On the calculation of closure-free fatigue crack propagation data in monolithic metal alloys”, Mat. Sc. Eng.: A, vol. 190, no. 1-2, pp. 25-32, 1995. https://doi.org/10.1016/0921-5093(94)09610-9

J. Petit, G. Hénaff, and C. Sarrazin-Baudoux, “Environmentally assisted fatigue in the gaseous atmosphere”, Compr. Struct. Integr., vol. 6, pp. 211-280, 2003. https://doi.org/10.1016/b0-08-043749-4/06130-9

O. N. Romaniv, A. N. Tkach, and N. Lenets, “Effect of fatigue crack closure on near‐threshold crack resistance of structural steels”, Fat. Fract. Eng. Mat. Struct., vol. 10, no. 3, pp. 203-212, 1987. https://doi.org/10.1111/j.1460-2695.1987.tb00478.x

D. A. Lados, D. Apelian, and J. K. Donald, “Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys: Mechanisms in the near-threshold regime”, Acta Materialia, vol. 54, no. 6, pp. 1475-1486, 2006. https://doi.org/10.1016/j.actamat.2005.11.019

P. Hutař, S. Seitl, and T. Kruml, “Effect of specimen geometry on fatigue crack propagation in threshold region”, Int. Conf. on Fracture (ICF 12), vol. 4, pp. 2914-2922, 2009.

P. C. Paris, H. Tada, and J K. Donald, “Service load fatigue damage —A historical perspective”, Int. J. Fatigue, vol. 21, Supplement I, pp. S35-S46, 1999. https://doi.org/10.1016/S0142-1123(99)00054-7

D. Kujawski, “Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys”, Int. J. Fatigue, vol. 23, no. 2, pp. 95-102, 2001. https://doi.org/10.1016/s0142-1123(00)00085-2

How to Cite

APA

Medina Bernal, K. A., & Vanegas Useche, L. V. . (2022). Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan. Ingeniería, 27(3), e18453. https://doi.org/10.14483/23448393.18453

ACM

[1]
Medina Bernal, K.A. and Vanegas Useche, L.V. 2022. Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan. Ingeniería. 27, 3 (Aug. 2022), e18453. DOI:https://doi.org/10.14483/23448393.18453.

ACS

(1)
Medina Bernal, K. A.; Vanegas Useche, L. V. . Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan. Ing. 2022, 27, e18453.

ABNT

MEDINA BERNAL, K. A.; VANEGAS USECHE, L. V. . Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan. Ingeniería, [S. l.], v. 27, n. 3, p. e18453, 2022. DOI: 10.14483/23448393.18453. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/18453. Acesso em: 26 sep. 2022.

Chicago

Medina Bernal, Kebin Alberto, and Libardo Vicente Vanegas Useche. 2022. “Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan”. Ingeniería 27 (3):e18453. https://doi.org/10.14483/23448393.18453.

Harvard

Medina Bernal, K. A. and Vanegas Useche, L. V. . (2022) “Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan”, Ingeniería, 27(3), p. e18453. doi: 10.14483/23448393.18453.

IEEE

[1]
K. A. Medina Bernal and L. V. . Vanegas Useche, “Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan”, Ing., vol. 27, no. 3, p. e18453, Aug. 2022.

MLA

Medina Bernal, K. A., and L. V. . Vanegas Useche. “Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan”. Ingeniería, vol. 27, no. 3, Aug. 2022, p. e18453, doi:10.14483/23448393.18453.

Turabian

Medina Bernal, Kebin Alberto, and Libardo Vicente Vanegas Useche. “Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan”. Ingeniería 27, no. 3 (August 19, 2022): e18453. Accessed September 26, 2022. https://revistas.udistrital.edu.co/index.php/reving/article/view/18453.

Vancouver

1.
Medina Bernal KA, Vanegas Useche LV. Sobre la determinación del umbral del rango del factor de intensidad de tensiones y los factores que lo afectan. Ing. [Internet]. 2022Aug.19 [cited 2022Sep.26];27(3):e18453. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/18453

Download Citation

Visitas

1

Dimensions


PlumX


Downloads

Download data is not yet available.