
DOI:
https://doi.org/10.14483/23448393.22528Published:
2025-04-15Issue:
Vol. 30 No. 1 (2025): January-AprilSection:
Civil and Environmental EngineeringAnalysis of the Physical and Mechanical Behavior of Soil Reinforced with Banana Fibers
Análisis del comportamiento físico y mecánico del suelo reforzado con fibras de plátano
Keywords:
Soils, natural fibers, banana fibers, geotechnical properties, physical and mechanical behavior (en).Keywords:
Suelos, fibras naturales, fibras de plátano, propiedades geotécnicas (es).Downloads
Abstract (en)
Context: Soils reinforced with natural fibers such as banana fibers (BF) constitute a promising alternative for improving the geotechnical properties of the soil, especially in rapidly growing urban contexts like Peru.
Methods: This study was structured into four stages: the extraction and preparation of soil samples; the evaluation of the physical characteristics of the fibers; mixing with proportions of 0.5, 1, 1.5, and 2% BF relative to the soil dry weight; and physical and mechanical tests to assess the effects on geotechnical properties.
Results: The addition of 1% BF optimized the properties of the modified soil: the maximum dry density remained stable, the California bearing ratio increased by 5.95%, and the unconfined compressive strength increased by 23.81% compared to natural soil.
Conclusions: The use of BF-treated soil meets the local standards for application in infrastructure such as roads and pavements, thus promoting sustainable construction practices and contributing to the development of resilient and environmentally responsible infrastructure.
Abstract (es)
Contexto: Los suelos reforzados con fibras naturales como las fibras de plátano (FP) representan una alternativa prometedora para mejorar las propiedades geotécnicas de los suelos arcillosos de baja plasticidad, especialmente en contextos urbanos de rápido crecimiento como el Perú.
Métodos: Este estudio se estructuró en cuatro etapas: la extracción y preparación de muestras del suelo; la evaluación de las características de la fibra; la mezcla con proporciones de 0.5, 1, 1.5 y 2 % de FP respecto al peso seco del suelo; y la realización de pruebas físicas y mecánicas del suelo estabilizado.
Resultado: La adición de 1 % de FP optimizó las propiedades del suelo natural, pues la máxima densidad seca se mantuvo estable, el índice de soporte de California aumentó en un 5.95 % y la resistencia a la compresión no confinada incrementó en un 23.81 % en comparación con el suelo natural.
Conclusiones: El uso del suelo tratado con FP cumple con los estándares locales para aplicaciones en infraestructuras como carreteras y pavimentaciones, lo que promueve prácticas constructivas sostenibles y contribuye al desarrollo de infraestructuras resilientes y ambientalmente responsables.
References
S. Hasnah et al., "A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications," Polymers, vol. 14, no. 17, art. 3698, 2022. https://doi.org/10.3390/polym14173698
N. Faizah, M. AlHamidi, F. Mansor, and S. Anuar, "Influence of banana fiber on shear strength of clay soil," IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, art. 012099, 2020. https://doi.org/10.1088/1757-899X/864/1/012099
R. Kiani et al., "Sustainability in construction projects: A systematic literature review," Sustainability, vol. 13, no. 4, art. 1932, 2021. https://doi.org/10.3390/su13041932
G. Alhakim, L. Jaber, O. Baalbaki, and F. Barraj, "Utilization of fan palm, date palm, and phragmites australis fibers for improving the mechanical behavior of sandy soil," Geomech. Energy Environ., vol. 33, art. 100427, 2023. https://doi.org/10.1016/j.gete.2022.100427
A. Temitayo, O. Olugbemiga, O. Olufemi, and E. Temidayo, "Physico-chemical, thermal and micro-structural characterization of four common banana pseudo-stem fiber cultivars in Nigeria," J. Nat. Fibers, vol. 20, no. 1, art. 2167031, 2023a. https://doi.org/10.1080/15440478.2023.2167031
W. Qamar, A. Hassan, Z. Rehman, and Z. Masoud, "Sustainable application of wool-banana bio-composite waste material in geotechnical engineering for enhancement of elastoplastic strain and resilience of subgrade expansive clays," Sustain., vol. 14, no. 20, art. 13215, 2022. https://doi.org/10.3390/su142013215
A. Samir, F. Ashour, A. Abdel, and M. Bassyouni, "Recent advances in biodegradable polymers for sustainable applications," npj Mater. Degrad., vol. 6, art. 68, 2022. https://doi.org/10.1038/s41529-022-00277-7
S. Fogue et al., "Investigation of chemical, physical and morpho-mechanical properties of banana-plantain stalk fibers for ropes and woven fabrics used in composite and limited-lifespan geotextile," Heliyon, vol. 3, no. 8, art. e29656, 2024. https://doi.org/10.1016/j.heliyon.2024.e29656
V. Kumar et al., "Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges," Carbohydr. Polym. Technol. Appl., vol. 6, art. 100366, 2023. https://doi.org/10.1016/j.carpta.2023.100366
P. Badanayak, J. Seiko, and G. Bose, "Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification," J. Nat. Fibers., vol. 20, no. 1, art. 2168821, 2023. https://doi.org/10.1080/15440478.2023.2168821
J. C. León Carrasco, "Producción de banano de Perú alcanzó las 2.414.382 toneladas en 2023," Agraria.pe, 2024. [Online]. Available: https://agraria.pe/noticias/produccion-de-banano-de-peru-alcanzo-las-2-414-382-toneladas-37112#:~:text=Producci%C3%B3n%20de%20banano%20de%20Per%C3%BA%20alcanz%C3%B3%20las%202.414.382%20toneladas%20en%202023,-Enviar%20Imprimir&text=La%20principal%20regi%C3%B3n%20productora%20de,y%20Hu%C3%A1nuco%20con%20233.775%20toneladas
Minagri, "MINAGRI desarrollará tecnología que proteja al banano orgánico de letal hongo Fusarium Oxysporium," inia, 2020. [Online]. Available: https://www.inia.gob.pe/2020-nota-040/
D. Dutta and N. Sit, "Preparation and characterization of potato starch-based composite films reinforced by modified banana fibers and its application in packaging of grapes," Int. J. Biol. Macromol., vol. 254, part 2, art. 127791, 2024. https://doi.org/10.1016/j.ijbiomac.2023.127791
A. Temitayo, O. Olugbemiga, O. Olufemi, E. Temidayo, and M. Hussain, "Banana pseudo stem fiber, hybrid composites and applications: A review," Hybrid Adv., vol. 4, art. 100101, 2023b. https://doi.org/10.1016/j.hybadv.2023.100101
A. Karimah et al., "A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations.," J. Mater. Res. Technol., vol. 13, pp. 2442-2458, 2021. https://doi.org/10.1016/j.jmrt.2021.06.014
A. Vinod, S. Suchart, and P. Jyotishkumar, "Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites," J. Clean. Prod., vol. 258, art. 120978, 2020. https://doi.org/10.1016/j.jclepro.2020.120978
S. Rangappa, S. Siengchin, and H. Dhakal, "Green-composites: Ecofriendly and Sustainability," Appl. Sci. Eng. Prog., vol. 13, no. 3, art. 183-184, 2020. https://doi.org/10.14416/j.asep.2020.06.001
T. Nguyen and B. Indraratna, "Natural fibre for geotechnical applications: Concepts, achievements and challenges," Sustain., vol. 15, no. 11, art. 8603, 2023. https://doi.org/10.3390/su15118603
P. Ellappan, V. Arumugam, and N. Muthukumaran, "Influence of natural fibres in strengthening of black cotton soil," IOP Conf. Ser. Mater. Sci. Eng., vol. 955, art. 012066, 2020. https://doi.org/10.1088/1757-899X/955/1/012066
D. Lal, R. Pravalika, S. Kumar, and G. Rao, "Stabilization of expansive soil by using Jute fiber," 3rd Int. Congr. Adv. Mech. Sci., vol. 998, art. 012045, 2020. https://doi.org/10.1088/1757-899X/998/1/012045
S. Prasanna and N. Macedon, "Application of jute fiber in soil stabilization," Sustain. Agri. Food Environ. Res., vol. 11, no. X, pp. 1-7, 2023. https://doi.org/10.20944/preprints202008.0534.v1
N. Bawadi, N. Ahmad, A. Mansor, S. Anuar, and M. Rahim, "Effect of natural fibers on the soil compaction characteristics," IOP Conf. Ser. Earth Environ. Sci., vol. 476, art. 012043, 2020. https://doi.org/10.1088/1755-1315/476/1/012043
L. Patil and S. Pusadkar, "MDD & OMC of black cotton soil reinforced with randomly distributed banana fibers," IOP Conf. Ser. Mater. Sci. Eng., vol. 970, art. 012029, 2020. https://doi.org/10.1088/1757-899X/970/1/012029
P. Somnath and S. Dipankar, "Performance evaluation of natural fiber reinforced Laterite soil for road pavement construction," Mater. Today Proc., vol. 62, part 2, art. 1246-1251, 2022. https://doi.org/10.1016/j.matpr.2022.04.534
S. Sridhar, H. Guruprasad, D. Naveenkumar, and D. Sangeetha, "Influence of treated coir fiber on durability properties of black cotton soil," Mater. Today Proc., vol. 80, part. 2, pp. 1611-1616, 2023. https://doi.org/10.1016/j.matpr.2023.02.127
S. Kumar, A. Kumar, and S. Naval, "Influence of Jute fibre on CBR value of expansive soil," Civil Eng. J., vol. 6, no. 6, pp. 1180-1194, 2020. https://doi.org/10.28991/cej-2020-03091539
M. Faisal, M. Khan, and K. Ali, "Effect of artificial and natural fibers on behavior of soil," Mater. Today Proc., vol. 64, part 1, pp. 481-487, 2022. https://doi.org/10.1016/j.matpr.2022.04.954
M. Wasim, J. Israr, K. Farooq, and H. Mujtaba, "Strength mechanism of a swelling soil improved with Jute fibers: A laboratory treatment," Geotech. Geol. Eng., vol. 41, no. 7, pp. 1-14, 2023. https://doi.org/10.1007/s10706-023-02517-2
Standard test method for particle-size analysis of soils, ASTM D422-63, ASTM International, 2022.
Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM D2487-17, ASTM International, 2020.
Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM D4318, ASTM International, 2010.
Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM D1557-12, ASTM International, 2021.
Método de prueba estándar para la relación de carga de California (CBR) de suelos compactados en laboratorio, ASTM D1883-14, ASTM International, 2022.
Standard test method for unconfined compressive strength of cohesive soil, ASTM D2166-06, ASTM International, 2010.
C. Contreras, J. Albuja-Sánchez, O. Proaño, C. Ávila, and A. Damián-Chalán, "The influence of abaca fiber treated with sodium hydroxide on the deformation coefficients Cc, Cs, and Cv of Organic Soils," Fibers, vol. 12, no. 10, art. 89, 2024. https://doi.org/10.3390/fib12100089
S. Ramírez, "Influencia de la concentraión de NaOH en la resistencia mecánica a la tensión de un material compuesto reforzado con fibra de bambú," Doctoral Thesis, Universidad ECCI, Bogotá, Colombia, 2017. [Online]. Available: https://repositorio.ecci.edu.co/entities/publication/fbcd1dba-7d84-44ce-89c3-fee611d744a7
Vivek, R. K . Dutta, and R. Parti, "Effect of chemical treatment on the tensile strength behavior of coir geotextiles," J. Nat. Fibers., vol. 17, no. 4, pp. 542-556, 2020. https://doi.org/10.1080/15440478.2018.1503132
J. Nisar, M. Mir, and Vivek, "Study on optimal preparation and rheological characteristics of waste low density polyethylene (LDPE)/styrene butadiene styrene (SBS) composite modified asphalt binder," Constr. Build. Mater., vol. 407, art. 133459, 2023. https://doi.org/10.1016/j.conbuildmat.2023.133459
Vivek, R. K. Dutta, and R. Parti, "Application potential of treated coir geotextiles in unpaved roads," J. Nat. Fibers., vol. 17, no. 10, pp. 1454-1467, 2020. https://doi.org/10.1080/15440478.2019.1578718
Vivek, R. Dutta, and R. Parti, "Effect of chemical treatment of the coir geotextiles on the interface properties of sand–/clay–coir geotextile interface," J J. Inst. Eng. (India) Series A, vol. 100, pp. 357-365, 2019. https://doi.org/10.1007/s40030-018-0348-x
Vivek and R. Dutta, "Bearing ratio behavior of sand overlying clay with treated coir geotextiles at the interface," J. Nat. Fibers., vol. 19, no. 14, pp. 7534-7541, 2021. https://doi.org/10.1080/15440478.2021.1952135
P. Jaswall, Vivek and S. Sinha, "Investigation on tensile strength characterisation of untreated and surface treated coir geotextiles," J. Ind. Text., vol. 52, 2022. https://doi.org/10.1177/15280837221118847
P. Jaswal and Vivek, "Experimental study on monotonic behaviour of two-layered unpaved road model reinforced with treated coir geotextiles," Int. J. Pavement Res. Technol., vol. 17, pp. 1377-1388, 2023. https://doi.org/10.1007/s42947-023-00293-z
P. Jaswal, Vivek, and S. Sinha, "Improvement in the performance of two layered model pavement with treated coir geotextile at the interface," J. Ind. Text., vol. 52, 2022. https://doi.org/10.1177/15280837221114161
Standard guide for x-ray emission spectrometric analysis, ASTM E1621-94(1999), ASTM International, 2017.
Standard test method for density of hydraulic, ASTM C188, ASTM International, 2017.
Standard test method for tensile properties of single textile fibers, ASTM D3822, ASTM International, 2020.
V. Sagar and T. Kaki, "Effects of coir fibre on the strength of black cotton soil," Int. J. Eng. Res. Mech. Civil Eng. (IJERMCE), vol. 10, no. 6, pp. 7-10, 2023. https://doi.org/10.1016/j.matpr.2023.02.127
J. García Chumacero, P. Acevedo Torres, C. Corcuera La Portilla, and S. Muñoz Pérez, "Influence of artificial intelligence on the optimization of the dosage of natural hydraulic lime, plastic and metallic fibers on the geological characteristics of a treated soil," Rev. Ing. Construcc., vol. 38, no. 3, pp. 473-484, 2023. https://doi.org/10.7764/RIC.00080.21
C. J. M. García, P. L. Acevedo Torres, C. C. Corcuera la Portilla, S. P. Muñoz Pérez, and L. I. Villena Zapata, "Effect of the reuse of plastic and metallic fibers on the characteristics of a gravelly soil with clays stabilized with natural hydraulic lime," Innov. Infrastruct. Solut., vol. 8, art. 185, 2023. https://doi.org/10.1007/s41062-023-01155-0
J. M. García Chumacero, J. L. Gonzales Macedo, and D. J. Sánchez Castillo, "Contribution of agricultural ashes and HDPE as a waste material for a sustainable environment applied to the stabilization of a low plasticity clay soil," Innov. Infrastruct. Solut., vol. 9, art. 67, 2024. https://doi.org/10.1007/s41062-024-01372-1
J. García, G. Arriola, L. Villena, and S. Muñoz, "Strength of concrete using partial addition of residual wood ash with respect to cement," Rev. Politéc., vol. 52, no. 1, pp. 45-54, 2023. https://doi.org/10.33333/rp.vol52n1.05
S. Muñoz, L. Villena, F. Tesen, Y. Coronel, J. García, and C. Brast, "Influence of coconut fiber on mortar properties in masonry walls," Electron. J. Struct. Eng., vol. 23, no. 4, pp. 52-58, 2023. https://doi.org/10.56748/ejse.23391
J. Bereche and J. García, "Replacement of fine aggregate with refractory brick residue in concrete exposed to elevated temperatures," Rev. Politéc., vol. 53, no. 2, pp. 79-88, 2024. https://doi.org/https://doi.org/10.33333/rp.vol53n2.08
C. J. Burgos, B. E. Cubas, and C. J. García, "Analysis of the combination of glass and polypropylene fibers on the mechanical properties of mortar," J. Build. Pathol. Rehabil., vol. 10, art. 22, 2024. https://doi.org/10.1007/s41024-024-00532-1
J. Chaname, J. García, and G. Arriola, "Mejoramiento de las propiedades mecánicas del concreto estructural utilizando microporoso etileno acetato de vinilo," Rev. Politéc., vol. 53, no. 2, pp. 17-26, 2024. https://doi.org/10.33333/rp.vol53n2.02
G. Cabanillas Hernández, J. García Chumacero, L. Villegas Granados, G. Arriola Carrasco, and N. Marín Bardales, "Sustainable use of wood sawdust as a replacement for fine aggregate to improve the properties of concrete: A Peruvian case study," Innov. Infrastruct. Solut., vol. 9, no. 7, art. 233, 2024. https://doi.org/10.1007/s41062-024-01567-6
A. L. Y. Cadenas, H. R. M. Jacinto, C. J. M. García, V. N. R. Salinas, and C. C. O. Chávez, "Experimental study of hybrid concrete blocks based on sawdust and calcined clay using cement as a binder," Innov. Infrastruct. Solut., vol. 9, art. 445, 2024. https://doi.org/10.1007/s41062-024-01768-z
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Favio Osmar Schreiber Robles, Socrates Pedro Muñoz Pérez, Juan Martin Garcia Chumacero, Elver Sanchez Diaz, Carlos Arturo Damiani Lazo, Juan De Dios Malpartida Iturregui, Angel Antonio Ruiz Pico, Edwin Adolfo Diaz Ortiz, Ernesto Dante Rodríguez Lafitte, Ana Paula Bernal Izquierdo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.