DOI:

https://doi.org/10.14483/23448393.18543

Published:

2022-11-20

Issue:

Vol. 28 No. 1 (2023): January-April

Section:

Systems Engineering

Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2

Educational Exploration Prototype Based on Mixed Reality for Surgery with a Meta 2 Headset

Authors

  • Eliana Aguilar Corporación Universitaria Autónoma del Cauca e investigadora en el Centro de Desarrollo Tecnológico CreaTIC. https://orcid.org/0000-0002-3810-5591
  • Pedro Luis Solarte Correa Universidad Miguel Hernández, España.
  • Jesus Humberto Dorado Industrial de la Universidad del Cauca
  • Oscar Andrés Vivas Albán Universidad del Cauca https://orcid.org/0000-0001-5381-8234
  • José María Sabater Universidad Miguel Hernández de Elche, España.

Keywords:

Augmented reality, mixed reality, Meta 2 headset, surgical exploration (en).

Keywords:

realidad aumentada, realidad mixta, casco Meta 2, exploración quirúrgica (es).

Abstract (es)

Contexto: Los cirujanos de intervenciones mínimamente invasivas requieren ampliar la información para realizar las rutas de intervención, este artículo describe un prototipo de realidad mixta de carácter educativo o prequirúrgico que hace uso del Casco Metavisión Meta II. Se crearon objetos 3D de estructuras morfológicas para neurocirugía y laparoscopia a partir de imágenes obtenidas de resonancia magnética MRI y TAC de un paciente real, con el fin de simular el acceso al cerebro y hacer reconocimiento del área abdominal.

Método: Este prototipo tiene un enfoque educativo cuyo objetivo es incentivar el reconocimiento de esquemas morfológicos de órganos, para lo cual se diseñaron tres pruebas. Estas pruebas consistieron en la búsqueda de tumores a través de la navegación y la interacción con un objeto exhibido en el casco de realidad mixta Meta 2. Para el área neurológica se dedicaron dos de las tres pruebas, en las dos primeras pruebas se midió el tiempo de búsqueda con cinco tumores, y para el área abdominal se realizó también una prueba para la búsqueda de dos tumores, diseñándose diversas interacciones en el recorrido espacial del objeto 3D generado, usando pantallas con despliegues de los cortes tomados de imágenes de tomografía computarizada. Posterior al desarrollo de las tres pruebas se realizó un proceso de medición de inmersión a partir del uso de un cuestionario.

Resultados: El 100% de los usuarios encontró altamente interesante la aplicación, en tanto que el 90% expreso que intento fijar su foco de atención en el desarrollo exitoso de la prueba, indicador del nivel de absorción de la aplicación. también el 70% de los usuarios describió su experiencia como de alto nivel de inmersión.

Conclusiones: Las pruebas demostraron que el prototipo es usable, absorbente y con un nivel de inmersión aceptable.

Abstract (en)

Context: This article describes an educational or pre-surgical mixed reality prototype using the Metavision Meta II headset. 3D objects of morphological structures for neurosurgery and laparoscopy were created from MRI and CT images of a real patient, in order to simulate the access to the brain and to make recognition of the abdominal area.

Method: This prototype has an educational approach whose objective is to encourage the recognition of morphological schemes of organs, for which three tests were designed. These tests consisted of searching for tumors through navigation and interaction with an object displayed in the Meta 2 mixed reality headset. Two of the three tests were dedicated to the neurological area, in which the search time was measured with five tumors, and for the abdominal area was performed for the search of two tumors, designing various interactions in the spatial path of the generated 3D object. An immersion measurement process was performed based on the use of a questionnaire.

Results: 100% of users found the application highly interesting, while 90% expressed that they tried to focus their attention on the successful completion of the test, an indicator of the level of absorption of the application. Also, 70% of users described their experience as highly immersive.

Conclusions: Tests showed the prototype to be usable, absorbent and with an acceptable level of immersion.

References

S. Abou El-Seoud, A. Mady, and E. Rashed, “An interactive mixed reality ray tracing rendering mobile application of medical data in minimally invasive surgeries”, Int. J. Interact. Mob. Technol.

(iJIM), vol. 13, no. 3, pp. 29-39, 2019. https://doi.org/10.3991/ijim.v13i03.9893

P. R. Armijo, C.-K. Huang, R. High, M. Leon, K.-C. Siu, and D. Oleynikov, “Ergonomics of minimally invasive surgery: An analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery”, Surg. Endosc, vol. 33, no. 7, pp. 2323-2331, 2019.

E. Azimi, R. Liu, C. Molina, J. Huang, and P. Kazanzides, “Interactive navigation system in mixedreality for neurosurgery”, 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 782-783, 2020. https://doi.org/10.1109/VRW50115.2020.00242

H. Brun, R. A. B. Bugge, L. K. R. Suther, S. Birkeland, R. Kumar, E. Pelanis, and O. J. Elle, “Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease”, Eur. Heart J. Cardiovasc. Imaging, vol. 20, no. 8, pp. 883-888, 2019. https://doi.org/10.1093/ehjci/jey184

G. Caccianiga, A. Mariani, E. De Momi, G. Cantarero, and J. D. Brown, “An evaluation of inanimate and virtual reality training for psychomotor skill development in robot-assisted minimally invasive surgery”, IEEE Trans. Med. Robot. Bionics, vol. 2, no. 2, pp. 118-129, 2020. https://doi.org/10.1109/TMRB.2020.2990692

J. Cartucho, D. Shapira, H. Ashrafian, and S. Giannarou, “Multimodal mixed reality visualisation for intraoperative surgical guidance”, Inter. J. Comput. Assist. Radiol. Surge, vol. 15, no. 5, pp. 819-826, 2020. https://doi.org/10.1007/s11548-020-02165-4

B. Fiani, F. De Stefano, A. Kondilis, C. Covarrubias, L. Reier, and K. Sarhadi, “Virtual reality in neurosurgery: “Can you see it?” - A review of the current applications and future potential”, World Neurosurg, vol. 141, pp. 291-298, 2020. https://doi.org/10.1016/j.wneu.2020.06.066

Y. Georgiou, and E. A. Kyza, “The development and validation of the ARI questionnaire: An instrument for measuring immersion in location-based augmented reality settings”, Int. J. Hum. Comput. Studies, vol. 98, pp. 24-37, 2017. https://doi.org/10.1016/j.ijhcs.2016.09.014

K. D. Gray, J. G. Burshtein, L. Obeid, M. D. Moore, G. Dakin, A. Pomp, and C. Afaneh, “Laparoscopic appendectomy: Minimally invasive surgery training improves outcomes in basic laparoscopic procedures”, World J. Surg, vol. 42, no. 6, pp. 1706-1713, 2018. https://doi.org/10.1007/s00268-017-4374-z

H. G. Guedes, Z. M. Câmara Costa Ferreira, L. Ribeiro de Sousa Leão, E. F. Souza Montero, J. P. Otoch, and E. L. de Almeida Artifon, “Virtual reality simulator versus box-trainer to teach minimally invasive procedures: A meta-analysis”, Int. J. Surg, vol. 61, pp. 60-68, 2019. https://doi.org/10.1016/j.ijsu.2018.12.001

B. Hoppenstedt et al. “Applicability of immersive analytics in mixed reality: Usability study”, IEEE Access, vol. 7, pp. 71921-71932, 2019. https://doi.org/10.1109/ACCESS.2019.2919162

H.-Z. Hu, X.-B. Feng, Z.-W. Shao, M. Xie, S. Xu, X.-H. Wu, and Z.-W. Ye, “Application and prospect of mixed reality technology in medical field”, Curr. Med. Sci, vol. 39, no. 1, pp. 1-6, 2019. https://doi.org/10.1007/s11596-019-1992-8

F. Incekara, M. Smits, C. Dirven, and A. Vincent, “Clinical feasibility of a wearable mixedreality device in neurosurgery”, World Neurosurg, vol. 118, pp. e422-e427, 2018. https://doi.org/10.1016/j.wneu.2018.06.208

A. Javaux, D. Bouget, C. Gruijthuijsen, D. Stoyanov, T. Vercauteren, S. Ourselin, J. Deprest, K. Denis, and E. Vander Poorten, “A mixed-reality surgical trainer with comprehensive sensing for fetal laser minimally invasive surgery”, Int. J. Comput. Assist. Radiol. Surg, vol. 13, pp. 1949-1957, 2018. https://doi.org/10.1007/s11548-018-1822-7

T. Koike et al., “Development of innovative neurosurgical operation support method using mixed-reality computer graphics”, World Neurosurg, X, vol. 11, 2021. https://doi.org/10.1016/j.wnsx.2021.100102

A. J Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen, “A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery”, Expert Rev. Med. Devices, vol. 18, no. 1, pp. 47-62, 2021. https://doi.org/10.1080/17434440.2021.1860750

D. Panariello et al., “Using the KUKA LBR iiwa robot as haptic device for virtual reality training of hip replacement surgery”, 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 449-450, 2019. https://doi.org/10.1109/IRC.2019.00094

A. Parisi et al., “Minimally invasive surgery for gastric cancer: A comparison between robotic, laparoscopic and open surgery”, World J. Gastroenterol, vol. 23, no. 13, pp. 2376-2384, 2017. https://doi.org/10.3748/wjg.v23.i13.2376

Z. Qi et al., “Holographic mixed-reality neuronavigation with a head-mounted device: Technical feasibility and clinical application”, J. Neurosurg. Focus, vol. 51, no. 2, 2021. https://doi.org/10.3171/2021.5.FOCUS21175

M. Runciman, A. Darzi, and G. P. Mylonas, “Soft robotics in minimally invasive surgery”, Soft Robotics, vol. 6, no. 4, pp. 423-443, 2019. https://doi.org/10.1089/soro.2018.0136

Y. Saito et al., “Intraoperative 3D hologram support with mixed reality techniques in liver surgery”, Ann. Surg, vol. 271, no. 1, pp. e4-e7, 2020. https://doi.org/10.1097/SLA.0000000000003552

S. Sharif, and A. Afsar, “Learning curve and minimally invasive spine surgery”, World Neurosurg, vol. 119, pp. 472-478,

https://doi.org/10.1016/j.wneu.2018.06.094

R. Wierzbicki et al., “3D mixed-reality visualization of medical imaging data as a supporting tool for innovative, minimally invasive surgery for gastrointestinal tumors and systemic treatment as a new path in personalized treatment of advanced cancer diseases”, J. Cancer Res. Clin. Oncol, vol. 148, pp. 237-243, 2022. https://doi.org/10.1007/s00432-021-03680-w

J. Zeiger, A. Costa, J. Bederson, R. K. Shrivastava, and A. M. C. Iloreta, “Use of mixed reality visualization in endoscopic endonasal skull base surgery”, Oper. Neurosurg, vol. 19, no. 1, pp. 43-52, 2020. https://doi.org/10.1093/ons/opz355

Z.-Y. Zhang et al., “Preliminary application of mixed reality in neurosurgery: Development and evaluation of a new intraoperative procedure”, J. Clinic Neurosci, vol. 67, pp. 234238, 2019. https://doi.org/10.1016/j.jocn.2019.05.038

How to Cite

APA

Aguilar, E., Solarte Correa, P. L., Dorado, J. H., Vivas Albán, O. A. ., & Sabater, J. M. . (2022). Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2. Ingeniería, 28(1), e18543. https://doi.org/10.14483/23448393.18543

ACM

[1]
Aguilar, E., Solarte Correa, P.L., Dorado, J.H., Vivas Albán, O.A. and Sabater, J.M. 2022. Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2. Ingeniería. 28, 1 (Nov. 2022), e18543. DOI:https://doi.org/10.14483/23448393.18543.

ACS

(1)
Aguilar, E.; Solarte Correa, P. L.; Dorado, J. H.; Vivas Albán, O. A. .; Sabater, J. M. . Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2. Ing. 2022, 28, e18543.

ABNT

AGUILAR, E.; SOLARTE CORREA, P. L.; DORADO, J. H.; VIVAS ALBÁN, O. A. .; SABATER, J. M. . Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2. Ingeniería, [S. l.], v. 28, n. 1, p. e18543, 2022. DOI: 10.14483/23448393.18543. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/18543. Acesso em: 7 dec. 2022.

Chicago

Aguilar, Eliana, Pedro Luis Solarte Correa, Jesus Humberto Dorado, Oscar Andrés Vivas Albán, and José María Sabater. 2022. “Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2”. Ingeniería 28 (1):e18543. https://doi.org/10.14483/23448393.18543.

Harvard

Aguilar, E., Solarte Correa, P. L., Dorado, J. H., Vivas Albán, O. A. . and Sabater, J. M. . (2022) “Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2”, Ingeniería, 28(1), p. e18543. doi: 10.14483/23448393.18543.

IEEE

[1]
E. Aguilar, P. L. Solarte Correa, J. H. Dorado, O. A. . Vivas Albán, and J. M. . Sabater, “Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2”, Ing., vol. 28, no. 1, p. e18543, Nov. 2022.

MLA

Aguilar, E., P. L. Solarte Correa, J. H. Dorado, O. A. . Vivas Albán, and J. M. . Sabater. “Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2”. Ingeniería, vol. 28, no. 1, Nov. 2022, p. e18543, doi:10.14483/23448393.18543.

Turabian

Aguilar, Eliana, Pedro Luis Solarte Correa, Jesus Humberto Dorado, Oscar Andrés Vivas Albán, and José María Sabater. “Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2”. Ingeniería 28, no. 1 (November 20, 2022): e18543. Accessed December 7, 2022. https://revistas.udistrital.edu.co/index.php/reving/article/view/18543.

Vancouver

1.
Aguilar E, Solarte Correa PL, Dorado JH, Vivas Albán OA, Sabater JM. Prototipo de exploración educativa basada en realidad mixta para cirugía con casco Meta 2. Ing. [Internet]. 2022Nov.20 [cited 2022Dec.7];28(1):e18543. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/18543

Download Citation

Visitas

30

Dimensions


PlumX


Downloads

Download data is not yet available.