
DOI:
https://doi.org/10.14483/23448393.19573Published:
2023-10-17Issue:
Vol. 28 No. 3 (2023): September-DecemberSection:
Environmental EngineeringStudy on the Use of Coal Bottom Ash as a Raw Material Replacement for the Production of Clay Bricks
Estudio sobre el aprovechamiento de cenizas de fondo de carbón como reemplazante de materia prima para la elaboración de ladrillos de arcilla
Keywords:
Bottom ash, building materials, industrial waste, sustainability (en).Keywords:
cenizas, materiales de construcción, residuos industriales, sostenibilidad (es).Downloads
Abstract (en)
Context: Masonry bricks are one of the most widely used building materials in the world, which leads to the overexploitation of its raw materials. Its production consumes a large amount of energy and has a large environmental footprint. The clay brick industry can add residues to its raw materials; among those reported are tea processing waste, brick waste, paper industry residues, waste from coffee mills, and coal ashes.
Method: Bottom coal ashes were characterized by X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, electronic microscopy, and particle size analysis. In addition, their density and loss on ignition were determined. The incorporation of ashes in the elaboration of clay bricks was evaluated, with sand replacement percentages of 0, 3, 5, and 7%. Finally, the physical and mechanical properties of the bricks were evaluated.
Results: The water absorption and apparent porosity increased, while the compressive strength and bulk density decreased with the incorporation of ash in the brick samples, except for those with a 3% replacement, which showed a better performance in the evaluated properties.
Conclusions: Coal bottom ashes have great potential in the manufacturing of clay bricks. The findings of this study indicate that, by incorporating up to 3% ashes, bricks can be obtained which comply with the Colombian regulations.
Abstract (es)
Contexto: El ladrillo de mampostería es uno de los materiales de construcción más utilizados en todo el mundo, lo que conlleva a una sobreexplotación de sus materias primas. Su producción consume gran cantidad de energía y tiene una gran huella ambiental. La industria de ladrillos de arcilla tiene la capacidad de adicionar residuos a su materia prima; entre los reportados se encuentran residuos del procesamiento del té, residuos de ladrillo, residuos de la industria del papel, residuos del beneficio de café y cenizas de carbón.
Método: Se caracterizaron cenizas de carbón de fondo por fluorescencia de rayos X, difracción de rayos X, análisis termogravimétrico, microscopía electrónica y análisis de tamaño de partícula. Además, se determinó su densidad y pérdida al fuego. Se evaluó la incorporación de cenizas en la elaboración de ladrillos de arcilla, con porcentajes de reemplazo de arena de 0, 3, 5 y 7 %. Finalmente, se evaluaron las propiedades físicas y mecánicas de los ladrillos.
Resultados: La absorción de agua y la porosidad aparente aumentaron, mientras que la resistencia a la compresión y la densidad aparente disminuyeron con la incorporación de cenizas en las muestras de ladrillos, a excepción de aquellas con un reemplazo del 3 %, las cuales presentaron un mejor desempeño en las propiedades evaluadas.
Conclusiones: Las cenizas de fondo de carbón tienen un gran potencial en la fabricación de ladrillos de arcilla. Los hallazgos de este estudio indican que, al incorporar hasta un 3% de cenizas, se pueden obtener ladrillos que cumplen la normatividad colombiana.
References
Z. T Yao et al., “A comprehensive review on the applications of coal fly ash,” Earth-Sci. Rev., vol. 141, pp. 105-121, 2015. https://doi.org/10.1016/j.earscirev.2014.11.016
M. Temimi, J. P. Camps, and M. Laquerbe, “Valorization of fly ash in the cold stabilization of clay materials,” Resourc. Cons. Recyc., vol. 15, no. 3-4, pp. 219-234, 1995. https://doi.org/10.1016/0921-3449(95)00038-0
M. Ilic, C. Cheeseman, C. Sollars, and J. Knight, J., “Mineralogy and microstructure of sintered lignite coal fly ash,” Fuel, vol. 82, no. 3, pp. 331-336, 2003. https://doi.org/10.1016/S0016-2361(02)00272-7
S. Jala and D. Goyal, “Fly ash as a soil ameliorant for improving crop production – A review,” Bioresource Technology, vol. 97, no. 9, pp. 1136-1147, 2006. https://doi.org/10.1016/j.biortech.2004.09.004
Z. T. Yao, “Generation, characterization and extracting of silicon and aluminium from coal fly ash,” in Fly Ash: Sources, Applications, and Potential Environmental Impacts, P. K. Sarker, Ed., New York, NY, USA: Nova Science Publishers, 2013, p. 3-58.
E. Fidanchevski et al., “Technical and radiological characterization of fly ash and bottom ash from thermal power plant”, J. Radioanalytical Nuc. Chem., pp. 1-10, 2021. https://doi.org/10.1007/s10967-021-07980-w
S. A. Mangi, M. H. W. Ibrahim, N. Jamaluddin, M. F. Arshad, S. H. Khahro, and R. P Jaya, “Influence of coal ash on the concrete properties and its performance under sulphate and chloride conditions”, Environ. Sci. Poll. Res., vol. 28, no. 43, pp. 60787-60797, 2021. https://doi.org/10.1007/s11356-021-15006-x
P. K. Kolay and S. Bhusal, “Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization”, Fuel, vol. 117, p. 118-124, 2014. https://doi.org/10.1016/j.fuel.2013.09.014
W. J. Lee, J. S. Lee, D. Atarashi, Y. H. Kim, and S. H. Lee, “Pore structure and possibility of fine dust removal for bottom ash sand”, J. Korean Ceramic Soc., vol. 57, p. 378-384, 2020. https://doi.org/10.1007/s43207-020-00046-9
E. Esmeray and M. Atıs, “Utilization of sewage sludge, oven slag and fly ash in clay brick production”, Const. Build. Mat., vol. 194, pp. 110-121, 2019. https://doi.org/10.1016/j.conbuildmat.2018.10.231
M. Sutcu, E. Erdogmus, O. Gencel, A. Gholampour, E. Atan, and T. Ozbakkaloglu, “Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production”, J. Clean. Prod., vol. 233, pp. 753-764, 2019. https://doi.org/10.1016/j.jclepro.2019.06.017
M. Tripathi and V. B. Chauhan, “Evaluation of waste glass powder to replace the clay in fired brick manufacturing as a construction material”, Innov. Infras. Sol., vol. 6, no. 3, pp. 1-16, 2021. https://doi.org/10.1007/s41062-021-00492-2
M. N. S. Zaimi, N. F. Ariffin, S. M. S. Mohsin, A. M. Hasim, and N. N. Nasrudin, “Behavior on the mechanical performance and scanning electron microscopy of coal waste brick”, Mat. Today: Proc., vol. 48, pp. 1816-1820, 2022. https://doi.org/10.1016/j.matpr.2021.09.136
Zhang, L., “Production of bricks from waste materials – A review”, Const. Build. Mat., vol. 47, pp. 643-655, 2013. https://doi.org/10.1016/j.conbuildmat.2013.05.043
A. L. Murmu and A. Patel, A., “Towards sustainable bricks production: An overview”, Const. Build. Mat., vol. 165, pp. 112-125, 2018. https://doi.org/10.1016/j.conbuildmat.2018.01.038
I. Demir, “An investigation on the production of construction brick with processed waste tea”, Build. Environ., vol. 41, no. 9, p. 1274-1278, 2006. https://doi.org/10.1016/j.buildenv.2005.05.004
I. Demir, and M. Orhan, “Reuse of waste bricks in the production line”, Build. Environ., vol. 38, no. 12, p. 1451-1455, 2003. https://doi.org/10.1016/S0360-1323(03)00140-9.
C. A. García-Ubaque, A. González-Hässig, and M. L. Vaca-Bohórquez, “Ceramic bricks made from municipal solid waste incineration-derived clay and ashes: A quality study”, Ing. Investig., vol. 33, no. 2, p. 36-41, 2013. https://doi.org/10.15446/ing.investig.v33n2.39515
C. Leiva et al., “Characteristics of fired bricks with co-combustion fly ashes”, J. Build. Eng., vol. 5, pp. 114-118, 2016. https://doi.org/10.1016/j.jobe.2015.12.001
S. Abbas, M. A. Saleem, S. M. Kazmi, and M. J. Munir, “Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties”, J. Build. Eng., vol. 14, pp. 7-14, 2017. https://doi.org/10.1016/j.jobe.2017.09.008
ASTM C20-00, standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shape for boiling water, ASTM International, West Conshohocken, USA, 2000.
NTC 4017, métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla, Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Colombia, 2018.
P. M. Velasco, M. M. Ortíz, M. M. Giró, and L. M. Velasco, “Fired clay bricks manufactured by adding wastes as sustainable construction material – A review”, Const. Build. Mat., vol. 63, pp. 97-107, 2014. https://doi.org/10.1016/j.conbuildmat.2014.03.045
D. Zuluaga, E. López, M. Pérez, and M. Correa, “Estudio de prototipos de ladrillos cerámicos elaborados con residuos de la minería del oro”, Rev. Col. Mat., vol. 15, pp. 51-63, 2020. https://doi.org/10.17533/udea.rcm.342056
J. Torres, L. F. Mosquera, P. Paz, and M. F. Díaz, “Evaluation of coal bottom ash for clay brick manufacturing: A preliminary study”, Rev. UIS Ing., vol. 20, no. 4, pp. 161-170, 2021. https://doi.org/10.18273/revuin.v20n4-2021013
N. Afanador García, A. C. Ibarra Jaime, and C. A. López Durán, “Caracterización de arcillas empleadas en pasta cerámica para la elaboración de ladrillos en la zona de Ocaña, Norte de Santander”. Epsilon, vol. 1, no. 20, pp. 101-119, 2013. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1178&context=ep
R. Rodríguez-Álvaro, B. González-Fonteboa, S. Seara-Paz, and E. J. Rey-Bouzón, “Masonry mortars, precast concrete and masonry units using coal bottom ash as a partial replacement for conventional aggregates”, Const. Build. Mat., vol. 283, art. 122737, 2021. https://doi.org/10.1016/j.conbuildmat.2021.122737
N. Phonphuak, S. Kanyakam, and P. Chindaprasirt, “Utilization of waste glass to enhance physical-mechanical properties of fired clay brick”, J. Clean. Prod., vol. 112, pp. 3057-3062, 2016. https://doi.org/10.1016/j.jclepro.2015.10.084.
S. M. Kazmi, S. Abbas, M. A. Saleem, M. J. Munir, and A. Khitab, “Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes”, Const. Build. Mat., vol. 120, pp. 29-41, 2016. https://doi.org/10.1016/j.conbuildmat.2016.05.084
A. R. Djamaluddin, M. A. Caronge, M. W. Tjaronge, and R. Irmawaty, “Fired clay bricks incorporating palm oil fuel ash as a sustainable building material: An industrial-scale experiment”, Int. J. Sust. Eng., pp. 1-13, 2020. https://doi.org/10.1080/19397038.2020.1821403
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 José Fernando Benítez-Vivas, Juan Pablo Gutiérrez-López, Janneth Torres-Agredo, Luisa Fernanda Mosquera-Idrobo, Miguel Fernando Díaz-Huertas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.