DOI:

https://doi.org/10.14483/23448393.21303

Published:

2024-01-17

Issue:

Vol. 29 No. 1 (2024): January-April

Section:

Electrical, Electronic and Telecommunications Engineering

Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction

Deducción y aplicación de modelo promedio del interruptor en dispositivos de electrónica de potencia para reducción del tiempo de simulación

Authors

Keywords:

Microgrids, Average Model, Power electronics, Inverter, Converter (en).

Keywords:

electrónica de potencia, microrredes, modelo promedio, inversor, convertidor (es).

Abstract (en)

Context: Time is a crucial issue in the simulation of power electronics (PE) devices, even more when these elements are integrated into microgrids.
Method: This paper deals with the deduction of the average switch model for PE devices with the purpose of reducing simulation times. For doing this, the average model is only applied over the power switches of PE devices, not being applied over the complete topology as traditionally done. The proposed average model switch permits eliminating the ripple of voltage and currents but keeping the transient of the signals. The average model switch is derived for Boost and Buck converter switches and then generalized to power inverter switches. The proposed approach is validated using OpenModelica software.
Results: A system featuring a battery, a DC/DC converter, and an inverter connected to the power grid was simulated. A comparison was performed between a simulation that considers the power switches and a simulation that uses the proposed average model switch, the time simulation was reduced up to 99.788 %, which validates the proposed approach.
Conclusions: The proposed average switch model significantly reduces simulation times. This method offers a promising way to streamline power electronics device simulations, particularly in the context of microgrids and other applications where time efficiency is critical.

Abstract (es)

Contexto: El tiempo es un factor crucial en la simulación de dispositivos de electrónica potencia (EP), especialmente cuando estos elementos se integran en microredes.

Método: Este artículo deduce el modelo de interruptor promedio para dispositivos de EP con el propósito de reducir los tiempos de simulación. Para lograr esto, el modelo promedio se aplica únicamente a los interruptores de potencia de los dispositivos de EP, sin aplicarse a toda la topología como se hace tradicionalmente. El modelo promedio propuesto permite eliminar la oscilación de voltaje y corriente, pero conserva el comportamiento transitorio de las señales. El modelo promedio del interruptor se deriva para interruptores convertidores Boost y Buck y luego se generaliza a interruptores de inversores de potencia. El enfoque propuesto se valida utilizando el software OpenModelica.

Resultados: Se simuló un sistema que incluye una batería, un convertidor DC/DC y un inversor conectado a la red eléctrica. Se realizó una comparación entre una simulación que considera los interruptores de potencia y una simulación que utiliza el modelo promedio del interruptor propuesto, lo que redujo el tiempo de simulación hasta en un 99,788 %, validando así el modelo propuesto.

Conclusiones: El modelo de interruptor promedio propuesto reduce significativamente los tiempos de simulación. Este método ofrece una forma prometedora de agilizar las simulaciones de dispositivos de electrónica de potencia, especialmente en el contexto de microredes y otras aplicaciones donde la eficiencia en el tiempo es fundamental.

Author Biography

Nicolas Muñoz-Galeano, University of Antioquia

Full professor attached to Universidad de Antioquia’s Department of Electrical Engineering. Director
of the Efficient Energy Management research group (GIMEL). His interests include power electronics,
microgrids, and applied optimization.

References

R. R. Pearson, “Photovoltaic power converter modeling in Modelica,” Master’s thesis, National Distance Education University, 2017.

R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Berlin, Germany: Springer Science & Business Media, 2007.

N. Barhoumi, H. Marzougui, F. Slah, and F. BACHA, “Modelling and control of floating interleaved boost converter for electric vehicle,” in 2019 Int. Conf. Signal, Control Comm. (SCC), 2019, pp. 314–319. http://doi.org/10.1109/SCC47175.2019.9116157

S. Surya and S. Williamson, “Generalized circuit averaging technique for two-switch PWM DC-DC converters in CCM,” Energies, vol. 10, p. 392, 2021. https://doi.org/10.3390/electronics10040392

N. E. Zakzouk, A. K. Khamisand, A. K. Abdelsalam, and B. W. Williams, “Continuous-input continuous-output current Buck-Boost DC/DC converters for renewable energy applications: Modelling and performance assessment,” Energies, vol. 12, p. 2208, 2019. https://doi.org/10.3390/en12112208

R. Ali, K. Khan, M. Khalid, and A. Khan, “Multi-input boost converter for parallel connected renewable energy systems,” Renew. Energy Power Qual. J, vol. 18, pp. 403–408, 2020. https://doi.org/10.24084/repqj18.361

A. Chadha and M. K. Kazimierczuk, “Small-signal modeling of open-loop PWM tapped-inductor Buck DC–DC converter in CCM,” IEEE Tran. Ind. Electronics, vol. 68, no. 7, pp. 5765–5775, 2021. https://doi.org/10.1109/TIE.2020.2996157

N. Kianpoor, M. Yousefi, N. Bayati, A. Hajizadeh, and M. Soltani, “Fractional order modelling of DC-DC Boost converters,” in 2019 IEEE 28th Int. Symp. Ind. Electronics (ISIE), 2019, pp. 864–869. https://doi.org/10.1109/ISIE.2019.8781387

J. Bayona, N. Gelvez, and H. Espitia, “Design, analysis, and implementation of an equalizer circuit for the elimination of voltage imbalance in a half-bridge Boost converter with power factor correction,” Electronics, vol. 9, p. 2171, 2020. https://doi.org/10.3390/electronics9122171

M. A. M. Noh, M. R. Sahid, T. K. Fei, and R. Lakshmanan, “Small-signal analysis of a single-stage bridgeless boost half-bridge AC/DC converter with bidirectional switch,” Int. J. Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 4, pp. 2358–2371, 2021. https://doi.org/10.11591/ijpeds.v12.i4.pp2358-2371

D. K. Saini and M. K. Kazimierczuk, “Open-loop transfer functions of Buck–Boost converter by circuit-averaging technique,” IET Power Electronics, vol. 12, no. 11, pp. 2858–2864, 2019. https://doi.org/10.1049/iet-pel.2018.5514

Z. Liang, S. Hu, H. Yang, and X. He, “Synthesis and design of the AC current controller and impedance network for the quasi-Z-source converter,” IEEE Trans. Ind. Electronics, vol. 65, no. 10, pp. 8287–8296, 2018. https://doi.org/10.1109/TIE.2018.2808928

D. Tannir, Y. Wang, and P. Li, “Accurate modeling of nonideal low-power PWM DC-DC converters operating in CCM and DCM using enhanced circuit-averaging techniques,” ACM Trans, Design Autom. Electronic Syst., vol. 21, pp. 1–15, 2016. https://doi.org/10.1145/2890500

D. Jayachandran, V. Krishnaswamy, A. Lavanya, and K. Dhandapani, “Modelling and analysis of voltage mode controlled Luo converter,” American J. App. Sci., vol. 12, no. 10, pp. 766–774, 2015. https://doi.org/10.3844/ajassp.2015.766.774

L. Schmitz, D. C. Martins, and R. F. Coelho, “A simple, accurate small-signal model of a coupled-inductor-based DC-DC converter including the leakage inductance effect,” IEEE Trans. Circ. Syst. II: Express Briefs, vol. 68, no. 7, pp. 2533–2537, 2021. https://doi.org/10.1109/TCSII.2021.3061942

R. Reddivari and D. Jena, “Analysis of RCD snubber based non-ideal Z-source inverter using average modelling approaches,” Int. J. Electronics, vol. 107, no. 5, pp. 755–777, 2020. https://doi.org/10.1080/00207217.2019.1672811

F. Ghizzawi and D. Tannir, “Circuit-averaged modeling of non-ideal low-power DC-AC inverters,” in 2020 IEEE Texas Power Energy Conf. (TPEC), 2020, pp. 1–6. https://doi.org/10.1109/TPEC48276.2020.9042503

N. Salehi, H. Martinez-Garcia, G. Velasco-Quesada, and E. Garcia-Vilchez, “Inverter control analysis in a microgrid community based on droop control strategy,” Renew. Energy Power Qual. J., vol. 19, pp. 166–170, 2021. https://doi.org/10.24084/repqj19.247

M. Hamida, A. Fekik, A. Azar, N. Kamal, A. Ardjal, and H. Denoun, “Fuzzy logic cyclic reports modulation control for a five-Cell inverter,” 2022, pp. 154–159. https://doi.org/10.1109/SMARTTECH54121.2022.00043

J.-H. Cho, N.-J. Ku, R.-Y. Kim, and D.-S. Hyun, “Small-signal modeling and control of three-phase grid-connected three-level neutral-point-clamped inverter with a LCL filter,” in 2013 IEEE Energy Conv. Cong. Expo., 2013, pp. 4076–4081. https://doi.org/10.1109/ECCE.2013.6647242

P. Moraes, A. Reis, and A. Filho, “Novel time-domain average model for harmonic current prediction in photovoltaic and wind power units,” Int. Trans. Electrical Energy Syst., vol. 31, 2021. https://doi.org/10.1002/2050-7038.13253

T. Itkonen, J. Luukko, A. Sankala, T. Laakkonen, and R. Pollanen, “Modeling and analysis of the dead-time effects in parallel PWM two-level three-phase voltage-source inverters,” IEEE Trans. Power Electronics, vol. 24, no. 11, pp. 2446–2455, 2009. https://doi.org/10.1109/TPEL.2009.2033064

J. H. Urrea-Quintero, N. Munoz-Galeano, and D. A. Cuervo-Sanchez, “A procedure for power electronic converters design with controllability verification based on the nonlinear dynamical model,” pp. 1–6, 2017. https://doi.org/10.1109/PEPQA.2017.7981688

L. E. Torres-Acevedo, J. H. Urrea-Quintero, and N. Munoz-Galeano, “Control de tension en el bus DC para compensadores activos de potencia conectados en paralelo,” vol. 28, 2017. https://doi.org/10.4067/S0718-07642017000600013

How to Cite

APA

Benavides-Córdoba, S., Romero-Carvajal, A., Muñoz-Galeano, N., Cano-Quintero, J. B., and López-Lezama, J. M. (2024). Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction. Ingeniería, 29(1), e21303. https://doi.org/10.14483/23448393.21303

ACM

[1]
Benavides-Córdoba, S. et al. 2024. Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction. Ingeniería. 29, 1 (Jan. 2024), e21303. DOI:https://doi.org/10.14483/23448393.21303.

ACS

(1)
Benavides-Córdoba, S.; Romero-Carvajal, A.; Muñoz-Galeano, N.; Cano-Quintero, J. B.; López-Lezama, J. M. Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction. Ing. 2024, 29, e21303.

ABNT

BENAVIDES-CÓRDOBA, Santiago; ROMERO-CARVAJAL, Anamaría; MUÑOZ-GALEANO, Nicolas; CANO-QUINTERO, Juan Bernardo; LÓPEZ-LEZAMA, Jesús María. Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction. Ingeniería, [S. l.], v. 29, n. 1, p. e21303, 2024. DOI: 10.14483/23448393.21303. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/21303. Acesso em: 30 apr. 2024.

Chicago

Benavides-Córdoba, Santiago, Anamaría Romero-Carvajal, Nicolas Muñoz-Galeano, Juan Bernardo Cano-Quintero, and Jesús María López-Lezama. 2024. “Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction”. Ingeniería 29 (1):e21303. https://doi.org/10.14483/23448393.21303.

Harvard

Benavides-Córdoba, S. (2024) “Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction”, Ingeniería, 29(1), p. e21303. doi: 10.14483/23448393.21303.

IEEE

[1]
S. Benavides-Córdoba, A. Romero-Carvajal, N. Muñoz-Galeano, J. B. Cano-Quintero, and J. M. López-Lezama, “Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction”, Ing., vol. 29, no. 1, p. e21303, Jan. 2024.

MLA

Benavides-Córdoba, Santiago, et al. “Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction”. Ingeniería, vol. 29, no. 1, Jan. 2024, p. e21303, doi:10.14483/23448393.21303.

Turabian

Benavides-Córdoba, Santiago, Anamaría Romero-Carvajal, Nicolas Muñoz-Galeano, Juan Bernardo Cano-Quintero, and Jesús María López-Lezama. “Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction”. Ingeniería 29, no. 1 (January 17, 2024): e21303. Accessed April 30, 2024. https://revistas.udistrital.edu.co/index.php/reving/article/view/21303.

Vancouver

1.
Benavides-Córdoba S, Romero-Carvajal A, Muñoz-Galeano N, Cano-Quintero JB, López-Lezama JM. Deduction and Application of the Average Switch Model in Power Electronic Devices for Simulation Time Reduction. Ing. [Internet]. 2024 Jan. 17 [cited 2024 Apr. 30];29(1):e21303. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/21303

Download Citation

Visitas

10

Dimensions


PlumX


Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...