
DOI:
https://doi.org/10.14483/23448393.21898Published:
2025-06-27Issue:
Vol. 30 No. 1 (2025): January-AprilSection:
Mechanical EngineeringDesign and Implementation of a Virtual Laboratory for the Analysis and Synthesis of Mechanisms
Diseño e implementación de un laboratorio virtual para el análisis y síntesis de mecanismos
Keywords:
Virtual Laboratory, kinematics, dynamics, synthesis, mechanism (en).Keywords:
Laboratorio virtual, cinemática, dinámica, síntesis, mecanismos (es).Downloads
Abstract (en)
Context: This paper presents the design and implementation of a virtual laboratory developed as a pedagogical support tool for courses in mechanisms analysis and synthesis within Mechanical Engineering programs.
Method: Our virtual laboratory was developed using GeoGebra, Moodle, and Matlab. The design methodology was structured into four key stages: requirements analysis, conceptual design, content development, and implementation and evaluation.
Results: The outcome is a comprehensive virtual laboratory framework comprising 12 interactive exercises focused on the analysis and synthesis of planar mechanisms. This paper outlines the functional features of the virtual laboratory, including its graphical user interface, user guide, instructional practices, and assessment procedures – demonstrating its value as an effective tool to support and enhance both teaching and student learning.
Conclusions: The virtual laboratory allowed students to conceptualize through the visualization of kinematic and dynamic variables, offering a complementary and interactive alternative to traditional theoretical instructions. This aligns with active learning strategies, as the teacher reported greater student engagement. Students advanced at their own pace through the exercises and were able to observe how geometric and functional modifications in mechanisms influence their kinematic and dynamic behavior.
Abstract (es)
Contexto: Este trabajo presenta el diseño y la implementación de un laboratorio virtual desarrollado como soporte pedagógico en la enseñanza de la teoría de máquinas y mecanismos en ingeniería mecánica.
Método: Nuestro laboratorio virtual fue desarrollado utilizando Geogebra, Moodle y Matlab. La metodología de diseño se estructuró en cuatro etapas clave: análisis de requerimientos, diseño conceptual, desarrollo de contenido e implementación y evaluación.
Resultados: El resultado es un marco integral de laboratorio virtual que contiene 12 ejercicios centrados en el análisis y la síntesis de mecanismos planos. Este artículo presenta las características funcionales del laboratorio virtual, incluyendo su interfaz gráfica de usuario, guía de usuario, prácticas institucionales y procedimientos de evaluación —demostrando su valor como herramienta efectiva para apoyar y mejorar la enseñanza y el aprendizaje de los estudiantes.
Conclusiones: El laboratorio virtual permitió a los estudiantes conceptualizar mediante la visualización de variables cinemáticas y dinámicas, ofreciendo una alternativa complementaria e interactiva a la instrucción teórica tradicional. Esto se alinea con las estrategias de aprendizaje activo, pues el docente reportó un mayor compromiso por parte de los estudiantes. Los estudiantes avanzaron a su propio ritmo a través de los ejercicios y pudieron observar cómo las modificaciones geométricas y funcionales en los mecanismos influyen en su comportamiento cinemático y dinámico.
References
W. Ali, “Online and remote learning in higher education institutes: A necessity in light of COVID-19 Pandemic,” Higher Ed. Stud., vol. 10, no. 3, art. 16, 2020. https://doi.org/10.5539/hes.v10n3p16
United Nations Educational, Scientific, and Cultural Organization, Report of the Expert Meeting on Virtual Laboratories. Paris, France: UNESCO, 2000.
C. Infante, “Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,” Rev. Mex. Inv. Ed., vol. 19, no. 62, pp. 917-937, 2014. http://www.redalyc.org/articulo.oa?id=14031461013
A. Lorandi ,G. Hermida, J. Hernández, and E. Ladrón de Guevara, “Los laboratorios virtuales y laboratorios remotos en la enseñanza de la ingeniería,” Rev. Int. Ed. Ing., vol. 4, pp. 24-30, 2011.
J. Cabrera Medina and I. Sánchez Medina, “Laboratorios virtuales de física mediante el uso de herramientas disponibles en la Web,” Mem. Cong. UTP, vol. 1, no. 1, pp. 49-55, 2016. https://revistas.utp.ac.pa/index.php/memoutp/article/view/1296
R. Radhamani et al., “What virtual laboratory usage tells us about laboratory skill education pre- and post-COVID-19: Focus on usage, behavior, intention and adoption,” Educ. Inf. Technol., vol. 26, pp. 7477-7495, 2021. https://doi.org/10.1007/s10639-021-10583-3
L. Mishra, T. Gupta and A. Shree, “Online teaching-learning in higher education during lockdown period of COVID-19 pandemic,” Int. J. Ed. Res. Open, vol. 1, art. 100012, 2020. https://doi.org/10.1016/j.ijedro.2020.100012
F.D. Syahfitri et al., “The development of problem based virtual laboratory media to improve science process skills of students in biology,” Int. J. Res. Rev., vol. 6, no. 6, pp. 64-74, 2020. https://doi.org/10.20961/ijpte.v2i0.24952
N. Kapilan, P. Vidhya, and X.Z. Gao, “Virtual laboratory: A boon to the mechanical engineering education during COVID-19 pandemic,” High. Ed. Fut., vol. 8, no. 1, pp. 31-46, 2021. https://doi.org/10.1177/2347631120970757
K. Achuthan, P. Nedungadi, V. Kolil, S. Diwakar, and R. Raman, “Innovation adoption and diffusion of virtual laboratories,” Int. J. Online Biomed. Eng., vol. 16, no. 9, pp. 4-25, 2020. https://doi.org/10.3991/ijoe.v16i09.11685
G. Singh, A. Mantri, O. Sharma, and R.,Kaur, “Virtual reality learning environment for enhancing electronics engineering laboratory experience,” Comp. App. Eng. Ed., vol. 29, no. 1, pp. 229-243 2021. https://doi.org/10.1002/cae.22333
N. Tuli, G. Singh, A. Mantri, and S. Sharma, “Augmented reality learning environment to aid engineering students in performing practical laboratory experiments in electronics engineering”, Smart Learn. Environ., vol. 9, art. 26, 2022. https://doi.org/10.1186/s40561-022-00207-9
C.Hao, A. Zheng, Y.Wang, and B.Jiang, “Experiment information system based on an online virtual laboratory,” Future Internet, vol. 13, no. 2, art. 27, 2021. https://doi.org/10.3390/fi13020027
F. Vahdatikhaki, I. Friso-van Den Bos, S. Mowlaei, and B. Kolloffel, “Application of gamified virtual laboratories as a preparation tool for civil engineering students,” Eur. J. Eng. Ed., vol. 49, no. 1, pp. 164-191, 2024. https://doi.org/10.1080/03043797.2023.2265306
Y. Xiaoju et al., "Teaching practice of wind turbine practical training based on virtual teaching platform,” Comp. App. Eng. Ed., vol. 32, no. 2, art. e22710, 2024. https://doi.org/10.1002/cae.22710
A. Sánchez-López, J. Jáuregui_Jáuregui, N. García-Carrera, and Y. Perfecto-Avalos, “Evaluating effectiveness of immersive virtual reality in promoting students’ learning and engagement: A case study of analytical biotechnology engineering course,” Front. Ed., vol. 9, art. 1287615, 2024. https://doi.org/10.3389/feduc.2024.1287615
V. Kolil and K. Achuthan, “Virtual labs in chemistry education: A novel approach for increasing student’s laboratory educational consciousness and skills”, Ed. Info. Technol., vol. 29, pp. 25307-25331, 2024. https://doi.org/10.1007/s10639-024-12858-x
S. Dong, F. Yu, and K. Wang, “A virtual simulation experiment platform of subway emergency ventilation system and study on its teaching effect”, Sci. Rep., vol. 12, art. 10787, 2022. https://doi.org/10.1038/ s41598-022-14968-3
J. L. Calderón, “Aplicación de GeoGebra en la enseñanza de la cinemática de un mecanismo de cuatro barras,” Rev. Inst. GeoGebra São Paulo, vol. 9, no. 2, pp. 3-19, 2020. http://dx.doi.org/10.23925/2237-9657.2020.v9i2p003-019
B. Stahre Wästberg et al., "Design considerations for virtual laboratories: A comparative study of two virtual laboratories for learning about gas solubility and colour appearance,” Ed. Info. Technol., vol. 24, pp. 2059-2080, 2019. https://doi.org/10.1007/s10639-018-09857-0
V. M. Gándara, “Usos educativos de la computadora,” in El proceso de desarrollo y el diseño de interfaz al usuario, J. M. Álvarez and A. M. Bañuelos, Eds., Ciudad de México, Mexico: UNAM, 1994.
A. Joshi, M. Vinay, and P. Bhaskar, “Impact of coronavirus pandemic on the Indian education sector: perspectives of teachers on online teaching and assessments,” Inter. Technol. Smart Ed., vol. 18, no. 2, pp. 205-226, 2021. https://doi.org/10.1108/ITSE-06-2020-0087
A. Cova, X. Arrieta, and V. Riveros, “Análisis y comparación de diversos modelos de evaluación de software educativo,” Rev. Ven. Info. Tecnol. Conoc., vol. 5, no. 3, pp. 45-67, 2008.
O. González, M. A. Aguilar, F. J. Aguilar, and M. L. Matheu, “Evaluación de entornos inmersivos 3D como herramienta de aprendizaje B-Learning,” Ed. XX1, vol. 21, no. 2, pp. 417-440, 2018. https://doi.org/10.5944/educxx1.16204
Y. Arguelles, “Metodología para la evaluación de laboratorios virtuales en entornos 3D,” M.S. thesis, Universidad de Moa, Cuba, 2021.
J. Li and W. Liang, “Effectiveness of virtual laboratory in engineering education: A meta-analysis,” PLoS ONE, vol. 19, no. 12, art. e0316269, 2024. https://doi.org/10.1371/journal.pone.0316269
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Luz Adriana Mejia Calderón, Carlos Alberto Romero Piedrahita

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.