DOI:
https://doi.org/10.14483/23448393.22162Published:
2024-09-19Issue:
Vol. 29 No. 3 (2024): September-DecemberSection:
Electrical, Electronic and Telecommunications EngineeringPassivity-Based Model-Predictive Control for the Permanent Magnet Synchronous Machine
Control predictivo basado en pasividad para la máquina síncrona de imanes permanentes
Keywords:
Passivity-based control, Permanent-Magnet synchronous machines, Model Predictive control, Stability (en).Keywords:
Control basado en pasividad, Máquinas síncronas de imanes permanentes, Control predictivo de modelos, Estabilidad (es).Downloads
Abstract (en)
Context: This study focuses on advanced control techniques for permanent magnet synchronous machines (PMSMs), which are crucial in various industrial applications due to their efficiency and precise control requirements. Passivity-based control methods offer stability and performance, addressing these challenges effectively.
Method: A passivity-based model predictive control (MPC) is proposed, integrating port-Hamiltonian representation with optimization. Stability theorems are theoretically explored. The simulation evaluates the performance of our proposal under different prediction horizons and stability constraints.
Results: The proposed MPC is analyzed across several horizons, both including and excluding passivity and exponential stability constraints.
Conclusions: This study presents a novel passivity-based MPC approach for PMSM speed regulation, highlighting the importance of stability constraints. Future research should extend this controller to synchronous machines in power systems and voltage source converters.
Abstract (es)
Contexto: Este estudio se centra en técnicas avanzadas de control para máquinas síncronas de imanes permanentes (PMSM), fundamentales en diversas aplicaciones industriales debido a su eficiencia y requisitos de control precisos. Los métodos de control basados en la pasividad ofrecen estabilidad y rendimiento, abordando eficazmente estos desafíos.
Métodos: Se propone un control predictivo basado en el modelo de pasividad (MPC), integrando la representación port-Hamiltoniana con la optimización. Se exploran teoremas de estabilidad teóricamente. La simulación evalúa el rendimiento bajo diferentes horizontes de predicción y restricciones de estabilidad.
Resultados: El MPC propuesto se analiza en varios horizontes, junto con la inclusión o exclusión de restricciones de pasividad y estabilidad exponencial.
Conclusiones: Este estudio presenta un enfoque novedoso de MPC basado en la pasividad para la regulación de velocidad de PMSM, destacando la importancia de las restricciones de estabilidad. La investigación futura debería extender este controlador a máquinas síncronas en sistemas de energía y convertidores de fuente de voltaje.
References
V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, "High-power wind energy conversion systems: State-of-the-art and emerging technologies," Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015. https://doi.org/10.1109/JPROC.2014.2378692
I. Sami, N. Ullah, S. M. Muyeen, K. Techato, M. S. Chowdhury, and J.-S. Ro, "Control methods for standalone and grid connected micro-hydro power plants with synthetic inertia frequency support: A comprehensive review," IEEE Access, vol. 8, pp. 176313-176329, 2020. https://doi.org/10.1109/ACCESS.2020.3026492
D. Ramirez, J. P. Bartolome, S. Martinez, L. C. Herrero, and M. Blanco, "Emulation of an OWC ocean energy plant with PMSG and irregular wave model," IEEE Trans. Sustainable Energy, vol. 6, no. 4, pp. 1515-1523, 2015. https://doi.org/10.1109/TSTE.2015.2455333
R. S. Kaarthik, K. S. Amitkumar, and P. Pillay, "Emulation of a permanent-magnet synchronous generator in real-time using power hardware-in-the-loop," IEEE Trans. Transp. Electrification, vol. 4, no. 2, pp. 474-482, 2018. https://doi.org/10.1109/TTE.2017.2778149
K.-W. Hu and C.-M. Liaw, "Incorporated operation control of DC microgrid and electric vehicle," IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016. https://doi.org/10.1109/TIE.2015.2480750
Y. Belkhier et al., "Interconnection and damping assignment passivity-based non-linear observer control for efficiency maximization of permanent magnet synchronous motor," Energy Rep., vol. 8, pp. 1350-1361, 2022. https://doi.org/10.1016/j.egyr.2021.12.057
X. Liu, H. Yu, J. Yu, and Y. Zhao, "A novel speed control method based on port-controlled Hamiltonian and disturbance observer for PMSM drives," IEEE Access, vol. 7, pp. 111115-111123, 2019. https://doi.org/10.1109/ACCESS.2019.2934987
R. Ortega and E. Garcia-Canseco, "Interconnection and damping assignment passivity-based control: A survey," Eur. J. Control, vol. 10, no. 5, pp. 432-450, 2004. https://doi.org/10.3166/ejc.10.432-450
S. Vazquez et al., "Model predictive control: A review of its applications in power electronics," IEEE Ind. Electron. Mag., vol. 8, no. 1, pp. 16-31, 2014. https://doi.org/10.1109/MIE.2013.2290138
M. Schwenzer, M. Ay, T. Bergs, and D. Abel, "Review on model predictive control: An engineering perspective," Int. J. Adv. Manuf. Technol., vol. 117, no. 5, pp. 1327-1349, 2021. https://doi.org/10.1007/s00170-021-07682-3
M. Khanchoul, M. Hilairet, and D. Normand-Cyrot, "IDA-PBC under sampling for torque control of PMSM," IFAC Proc. Volumes, vol. 46, no. 11, pp. 15-20, 2013. https://doi.org/10.3182/20130703-3-FR-4038.00059
W. Gil-Gonzalez, A. Garces, and O. B. Fosso, "Passivity-based control for small hydro-power generation with PMSG and VSC," IEEE Access, vol. 8, pp. 153001-153010, 2020. https://doi.org/10.1109/ACCESS.2020.3018027
W. Wang, H. Shen, L. Hou, and H. Gu, "H∞ robust control of permanent magnet synchronous motor based on PCHD," IEEE Access, vol. 7, pp. 49150-49156, 2019. https://doi.org/10.1109/ACCESS.2019.2893243
F. Ramirez-Leyva, E. Peralta-Sanchez, J. Vasquez-Sanjuan, and F. Trujillo-Romero, "Passivity-based speed control for permanent magnet motors," Procedia Technol., vol. 7, pp. 215-222, 2013. https://doi.org/10.1016/j.protcy.2013.04.027
M. Aijaz and K. Sakthivel, "Neural network based voltage source converter for power management of hybrid energy system," in Proc. 2024 Third Int. Conf. Intelligent Tech. Control, Optimization Signal Process. (INCOS), pp. 1-7, 2024. https://doi.org/10.1109/INCOS59338.2024.10527574
Y. Cao and J. Guo, "Research on characteristic model-based adaptive control of high-speed permanent magnet synchronous motor with time delay," Int. J. Control Autom. Syst., vol. 22, no. 2, pp. 460-474, 2024. https://doi.org/10.1007/s12555-021-0968-1
Y. Zhang et al., "Backstepping control of permanent magnet synchronous motors based on load adaptive fuzzy parameter online tuning," J. Power Electron., pp. 1-12, 2024. https://doi.org/10.1007/s43236-024-00790-9
Z. Yin et al., "Plant-physics-guided neural network control for permanent magnet synchronous motors," IEEE J. Sel. Topics Signal Process., pp. 1-14, 2024. https://doi.org/10.1109/JSTSP.2024.3430822
W. Sun et al., "Research on efficiency of permanent-magnet synchronous motor based on adaptive algorithm of fuzzy control," Sustainability, vol. 16, no. 3, p. 1253, 2024. https://doi.org/10.3390/su16031253
K. Li, J. Ding, X. Sun, and X. Tian, "Overview of sliding mode control technology for permanent magnet synchronous motor system," IEEE Access, vol. 12, pp. 71685-71704, 2024. https://doi.org/10.1109/ACCESS.2024.3402983
Z. Huang et al., "Improved active disturbance rejection control for permanent magnet synchronous motor," Electronics, vol. 13, no. 15, p. 3023, 2024. https://doi.org/10.3390/electronics13153023
J. Zhu et al., "Model predictive current control based on hybrid control set for permanent magnet synchronous motor drives," IET Power Electron., vol. 17, no. 3, pp. 450-462, 2024. https://doi.org/10.1049/pel2.12657
D. B. Tchoumtcha, C. T. S. Dagang, and G. Kenne, "Synergetic control for stand-alone permanent magnet synchronous generator driven by variable wind turbine," Int. J. Dyn. Control, pp. 1-15, 2024. https://doi.org/10.1007/s40435-024-01384-w
L. Chen et al., "Sensorless control of permanent magnet synchronous motor based on adaptive enhanced extended state observer," Int. J. Circuit Theory Appl., vol. 52, pp. 4303-4322, 2024. https://doi.org/10.1002/cta.3983
F. Xiao et al., "A finite control set model predictive direct speed controller for PMSM application with improved parameter robustness," Int. J. Electr. Power Energy Syst., vol. 143, p. 108509, 2022. https://doi.org/10.1016/j.ijepes.2022.108509.
Y. Wang et al., "Adaptive observer-based current constraint control for permanent magnet synchronous motors," IEEE Access, vol. 11, pp. 91415-91426, 2023. https://doi.org/10.1109/ACCESS.2023.3289586
M. Graf, L. Otava, and L. Buchta, "Simple linearization approach for mpc design for small pmsm with field weakening performance," IFAC-PapersOnLine, vol. 48, no. 4, pp. 159-164, 2015. https://doi.org/10.1016/j.ifacol.2015.07.025
Y. Li, C. Zhao, Y. Zhou, and Y. Qin, "Model predictive torque control of pmsm based on data drive," Energy Reports, vol. 6, pp. 1370-1376, 2020. https://doi.org/10.1016/j.egyr.2020.11.019
T. Raff, C. Ebenbauer, and P. Allgower, Nonlinear Model Predictive Control: A Passivity-Based Approach. Berlin, Heidelberg, Germany: Springer, 2007.
L. T. Biegler, "A perspective on nonlinear model predictive control," Korean J. Chem. Eng., vol. 38, pp. 1317-1332, Jul 2021. https://doi.org/10.1007/s11814-021-0791-7
P. Falugi, "Model predictive control: a passive scheme," IFAC Proc. Vol., vol. 47, no. 3, pp. 1017-1022, 2014. https://doi.org/10.3182/20140824-6-ZA-1003.02165
A. Tahirovic and G. Magnani, "Some Limitations and Real-Time Implementation," in Nonlinear Model Predictive Control, London, UK: Springer, 2013, pp. 41-51. https://doi.org/10.1007/978-1-4471-5049-7_4
A. van der Schaft and D. Jeltsema, Port-Hamiltonian Systems Theory: An Introductory Overview, vol. 1. London, UK: Now, 2014. https://doi.org/10.1561/9781601987877
D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, "Constrained model predictive control: Stability and optimality," Automatica, vol. 36, no. 6, pp. 789-814, 2000. https://doi.org/10.1016/S0005-1098(99)00214-9
W. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, 2nd ed., Princeton, NJ, USA: Princeton Univ. Press, 2008. https://doi.org/10.1515/9781400841042
J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, "CasADi - A software framework for nonlinear optimization and optimal control," Math. Program. Comput., vol. 11, no. 1, pp. 1-36, 2019. https://doi.org/10.1007/s12532-018-0139-4
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Alejandro Garcés-Ruiz, Walter Julián Gil González
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.