
DOI:
https://doi.org/10.14483/23448393.22185Published:
2025-04-15Issue:
Vol. 30 No. 1 (2025): January-AprilSection:
Biomedical EngineeringOptimal Selection of Intrinsic Mode Functions Applied to Seizure Detection
Selección óptima de funciones de modo intrínseco aplicada a la detección de convulsiones
Keywords:
Seizure identification, empirical mode decomposition, optimal selection of IMFs, intrinsic mode functions, discrimination metrics (en).Keywords:
Identificación de convulsiones, descomposición modal empírica, selección óptima de IMFs, funciones modales intrínsecas, métricas de discriminación (es).Downloads
Abstract (en)
Context: Epilepsy is a severe chronic neurological disorder with considerable incidence due to recurrent seizures. These seizures can be detected and diagnosed noninvasively using an electroencephalogram. Empirical mode decomposition has shown excellent results in identifying epileptic crises.
Method: This study addressed a significant gap by proposing a novel approach for the automated selection of the most relevant intrinsic mode functions (IMFs) using empirical mode decomposition and discrimination metrics such as the Minkowski distance, the mean square error, cross-correlation, and the entropy function. The main objective was to address the challenge of determining the optimal number of IMFs required to accurately reconstruct brain activity signals.
Results:The results were promising, as they facilitated the identification of IMFs that contained the most relevant information, marking a significant advancement in the field. To validate these findings, standard methods including the correlation coefficient, the p-value, and the Wasserstein distance were employed. Additionally, an EEGLAB-based brain mapping was conducted, adding robustness and credibility to the results obtained.
Conclusions: Our method is a fundamental tool that enhances epileptic seizure identification from EEG signals, with significant clinical implications in the diagnosis and treatment of epilepsy.
Abstract (es)
Contexto: La epilepsia es un trastorno neurológico crónico grave con una incidencia considerable debido a convulsiones recurrentes. Estas convulsiones pueden ser detectadas de manera no invasiva y diagnosticadas mediante un electroencefalograma. La descomposición modal empírica ha mostrado excelentes resultados en la identificación de crisis epilépticas.
Métodos: Este estudio abordó una brecha significativa al proponer un enfoque novedoso para la selección automatizada de las funciones de modo intrínseco (IMF) más relevantes utilizando descomposición empírica de modo y métricas de discriminación tales como la distancia de Minkowski, el error cuadrático medio, la correlación cruzada y la función de entropía. El objetivo primario fue abordar el desafío de determinar el número óptimo de IMF requeridas para reconstruir con precisión las señales de actividad cerebral.
Resultados: Los resultados fueron prometedores, pues facilitaron la identificación de IMF que contenían la información más relevante, marcando un avance significativo en el campo. Para validar estos hallazgos, se emplearon métodos estándar, incluyendo el coeficiente de correlación, el valor p y la métrica de Wasserstein. Además, se realizó un mapeo cerebral con EEGLAB, lo que agregó robustez y credibilidad a los resultados obtenidos.
Conclusiones: Nuestro método es una herramienta fundamental que permite mejorar la identificación de convulsiones epilépticas a partir de señales de EEG, con importantes implicaciones clínicas en el diagnóstico y tratamiento de la epilepsia.
References
S. M. Zuberi, E. Wirrell, E. Yozawitz, J. M. Wilmshurst, N. Specchio, K. Riney, R. Pressler, S. Auvin, P. Samia, E. Hirsch, S. Galicchio, C. Triki, O. C. Snead, S. Wiebe, J. H. Cross, P. Tinuper, I. E. Scheffer, E. Perucca, S. L. Moshe, and R. Nabbout, “Ilae classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ilae task force on nosology and definitions,” Epilepsia, vol. 63, no. 6, pp. 1349–1397, 2022. https://doi.org/10.1111/epi.17239
E. C. Wirrell, R. Nabbout, I. E. Scheffer, T. Alsaadi, A. Bogacz, J. A. French, E. Hirsch, S. Jain, S. Kaneko, K. Riney, P. Samia, O. C. Snead, E. Somerville, N. Specchio, E. Trinka, S. M. Zuberi, S. Balestrini, S. Wiebe, J. H. Cross, E. Perucca, S. L. Moshe, and P. Tinuper, “Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ilae task force on nosology and definitions,” Epilepsia, vol. 63, no. 6, pp. 1333–1348, 2022. https://doi.org/10.1111/epi.17237
S. Wong, A. Simmons, J. Rivera-Villicana, S. Barnett, S. Sivathamboo, P. Perucca, Z. Ge, P. Kwan, L. Kuhlmann, R. Vasa, K. Mouzakis, and T. J. O’Brien, “Eeg datasets for seizure detection and prediction—a review,” Epilepsia Open, vol. 8, no. 2, pp. 252–267, 2023. https://doi.org/10.1002/epi4.12704
B.-L. Maximiliano, M.-G. P. Andres, G. Eduardo, and M. M. M. Cabrera, “Electroencephalographic source localization based on enhanced empirical mode decomposition,” IAENG Int. J. Comp. SCi., vol. 46, p. 11, 2019. [Online]. Available: https://www.iaeng.org/IJCS/issues_v46/issue_2/IJCS_46_2_11.pdf
D. Wu, J. Wei, P.-P. Vidal, D. Wang, Y. Yuan, J. Cao, and T. Jiang, “A novel seizure detection method based on the feature fusion of multimodal physiological signals,” IEEE Internet Things J., vol. 11, no. 16, pp. 27 545–27 556, 2024. https://doi.org/10.1109/JIOT.2024.3398418
Z. Wang, X. Song, L. Chen, J. Nan, Y. Sun, M. Pang, K. Zhang, X. Liu, and D. Ming, “Research progress of epileptic seizure prediction methods based on eeg,” Cogn. Neurodyn., vol. 18, no. 5, pp. 2731–2750, 2024. https://doi.org/10.1007/s11571-024-10109-w
V. R., M. S., S. C., and K. S., “Quadrature response spectra deep neural based behavioral pattern analytics for epileptic seizure identification,” Meas. Sci. Rev., vol. 24, no. 2, pp. 67–71, Apr. 2024. [Online]. Available: https://journals.savba.sk/index.php/msr/article/view/2065
B. Zhang, W. Wang, Y. Xiao, S. Xiao, S. Chen, S. Chen, G. Xu, and W. Che, “Cross-subject seizure detection in eegs using deep transfer learning,” Comput. Math. Methods Med., vol. 2020, p. 7902072, 2020. https://doi.org/10.1155/2020/7902072
Y. Du, J. Jin, Y. Liu, and Q.Wang, “Classification of seizure eegs based on short-time fourier transform and hidden markov model,” in Proc. Asia-Pacific Signal Inf. Process. Assoc. Ann. Summit Conf. (APSIPA ASC), 2020, pp. 875–880. [Online]. Available: https://ieeexplore.ieee.org/document/9306434
M. Amiri, H. Aghaeinia, and H. R. Amindavar, “Automatic epileptic seizure detection in eeg signals using sparse common spatial pattern and adaptive short-time fourier transform-based synchrosqueezing transform,” Biomed. Signal Process. Control, vol. 79, p. 104022, 2023. [Online]. https://doi.org/10.1016/j.bspc.2022.104022
S. A. El-Gindy, A. Hamad, W. El-Shafai, A. A. M. Khalaf, S. M. El-Dolil, T. E. Taha, A. S. El-Fishawy, T. N. Alotaiby, S. A. Alshebeili, and F. E. A. El-Samie, “Efficient communication and eeg signal classification in wavelet domain for epilepsy patients,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 10, pp. 9193–9208, 2021. https://doi.org/10.1007/s12652-020-02624-5
M. Shen, P. Wen, B. Song, and Y. Li, “Real-time epilepsy seizure detection based on eeg using tunable-q wavelet transform and convolutional neural network,” Biomed. Signal Process. Control, vol. 82, p. 104566, 2023. https://doi.org/10.1016/j.bspc.2022.104566
D. Sunaryono, J. Siswantoro, R. Sarno, R. I. Susilo, and S. I. Sabilla, “Epilepsy detection using combination dwt and convolutional neural networks based on electroencephalogram,” in Proc. Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), 2023, pp. 411–416. https://doi.org/10.1109/ISITIA59021.2023.10221031
F. A. Jibon, M. H. Miraz, M. U. Khandaker, M. Rashdan, M. Salman, A. Tasbir, N. H. Nishar, and F. H. Siddiqui, “Epileptic seizure detection from electroencephalogram (eeg) signals using linear graph convolutional network and densenet based hybrid framework,” J. Radiat. Res. Appl. Sci., vol. 16, no. 3, p. 100607, 2023. https://doi.org/10.1016/j.jrras.2023.100607
A. Soler, P. A. Munoz-Gutierrez, M. Bueno-Lopez, E. Giraldo, and M. Molinas, “Low-density eeg for neural activity reconstruction using multivariate empirical mode decomposition,” Front. Neurosci., vol. 14, p. 175, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2020.00175/full
V. R. Carvalho, M. F. D. Moraes, A. P. Braga, and E. M. A. M. Mendes, “Evaluating five different adaptive decomposition methods for eeg signal seizure detection and classification,” Biomed. Signal Process. Control, vol. 62, p. 102073, 2020. https://doi.org/10.1016/j.bspc.2020.102073
L.-D. Guerrero, L. D. Romero, and M. Bueno-Lopez, “A review of epileptic seizure detection using eeg signals analysis in the time and frequency domain,” in Proc. IEEE 21st Int. Conf. Commun. Technol. (ICCT), 2021, pp. 1363–1367. https://doi.org/10.1109/ICCT52962.2021.9657835
M.-G. Murariu, F.-R. Dorobant, u, and D. T˘arniceriu, “A novel automated empirical mode decomposition (emd) based method and spectral feature extraction for epilepsy eeg signals classification,” Electronics, vol. 12, no. 9, p. 1958, 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/9/1958
L. A. Moctezuma and M. Molinas, “Classification of low-density eeg for epileptic seizures by energy and fractal features based on emd,” J. Biomed. Res., vol. 34, no. 3, pp. 180–190, 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324275/
L. A. Moctezuma and M. Molinas, “Eeg channel-selection method for epileptic-seizure classification based on multi-objective optimization,” Front. Neurosci., vol. 14, p. 593, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2020.00593/full
M. Thilagaraj, M. P. Rajasekaran, and N. A. Kumar, “Tsallis entropy: As a new single feature with the least computation time for classification of epileptic seizures,” Cluster Comput., vol. 22, no. 6, pp. 15 213–15 221, 2019. https://doi.org/10.1007/s10586-018-2549-5
V. S. Jebakumari, D. S. Saravanan, and D. Devaraj, “Seizure detection in eeg signal with novel optimization algorithm for selecting optimal thresholded offset gaussian feature,” Biomed. Signal Process. Control, vol. 56, p. 101708, 2020. https://doi.org/10.1016/j.bspc.2019.101708
A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online]. Available: https://www.ahajournals.org/doi/abs/10.1161/01.CIR.101.23.e215
A. H. Shoeb, “Application of machine learning to epileptic seizure onset detection and treatment,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 2009, ph.D. dissertation. [Online]. Available: https://dspace.mit.edu/handle/1721.1/54669
M. Chen, D. P. Mandic, P. Kidmose, and M. Ungstrup, “Qualitative assessment of intrinsic mode functions of empirical mode decomposition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2008, pp. 1905–1908. [Online]. Available: https://doi.org/10.1109/ICASSP.2008.4518007
E. Mateling and W. Schroder, “Analysis of spatiotemporal inner–outer large-scale interactions in turbulent channel flow by multivariate empirical mode decomposition,” Phys. Rev. Fluids, vol. 7, no. 3, p. 034603, Mar 2022. [Online]. Available: https://doi.org/10.1103/PhysRevFluids.7.034603
N. E. Huang, Z. Shen, S. R. Long, M. C.Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. Roy. Soc. London A., vol. 454, pp. 903 – 995, 1998.
D. P. Mandic, N. U. Rehman, Z. Wu, and N. E. Huang, “Empirical mode decomposition–based time–frequency analysis of multivariate signals: The power of adaptive data analysis,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 74–86, 2013. https://doi.org/10.1109/MSP.2013.2267931
Y.-H. Wang, C.-H. Yeh, H.-W. V. Young, K. Hu, and M.-T. Lo, “On the computational complexity of the empirical mode decomposition algorithm,” Physica A, vol. 400, no. 0, pp. 159–167, 2014. https://doi.org/10.1016/j.physa.2014.01.020
H. K. Fatlawi and A. Kiss, “Similarity-based adaptive window for improving classification of epileptic seizures with imbalance eeg data stream,” Entropy, vol. 24, no. 11, p. 1641, 2022. https://doi.org/10.3390/e24111641
F. Zhao, Y. Gao, X. Li, Z. An, S. Ge, and C. Zhang, “A similarity measurement for time series and its application to the stock market,” Expert Syst. Appl., vol. 182, p. 115217, 2021. https://doi.org/10.1016/j.eswa.2021.115217
A. Degirmenci and O. Karal, “Efficient density and cluster based incremental outlier detection in data streams,” Information Sciences, vol. 607, pp. 901–920, 2022. https://doi.org/10.1016/j.ins.2022.06.013
J. Han, J. Pei, and H. Tong, Data Mining: Concepts and Techniques, 4th ed. San Francisco, CA: Morgan Kaufmann, 2022. [Online]. Available: https://www.elsevier.com/books/data-mining/han/978-0-12-8117606
D. Boutana, M. Benidir, and B. Barkat, “On the selection of intrinsic mode functions in emd method: Application on heart sound signal,” in Proc. 3rd Int. Symp. Appl. Sci. Biomed. Commun. Technol. (ISABEL), 2010, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ISABEL.2010.5702895
P. A. Munoz, E. Giraldo, M. B. Lopez, and M. Molinas, “Automatic selection of frequency bands for electroencephalographic source localization,” in Proc. 9th IEEE Int. Conf. Neural Eng. (NER), pp. 1179–1182. https://doi.org/10.1109/NER.2019.8716979
Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image retrieval,” Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121, 2000. https://doi.org/10.1023/A:1026543900054
M. Bekbalanova, A. Zhunis, and Z. Duisebekov, “Epileptic seizure prediction in eeg signals using emd and dwt,” in Proc. 15th Int. Conf. Electron., Comput. Computation (ICECCO), pp. 1–4. https://doi.org/10.1109/ICECCO48375.2019.9043270
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Luis Daladier Guerrero Otoya, Maximiliano Bueno-Lopez, Eduardo Giraldo Suárez, Marta Molinas Cabrera

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.