
DOI:
https://doi.org/10.14483/23448393.22420Published:
2025-04-15Issue:
Vol. 30 No. 1 (2025): January-AprilSection:
Civil and Environmental EngineeringStructural Assessment of Flexible Pavements Based on the Level of Detail of Management Functions
Evaluación estructural de pavimentos flexibles basada en el nivel de detalle de las funciones de gestión
Keywords:
Pavement, Testing, Structural Models (en).Keywords:
Pavimento, Pruebas, Modelos estructurales (es).Downloads
Abstract (en)
Context: Pavement condition data are a fundamental component of pavement management systems (PMS) and play a critical role in structural evaluation. The quality of these data directly influences decision-making processes at the network, project, or research level particularly regarding the pavement project life cycle.
Method: This study aimed to assess 18 techniques for evaluating the structure of flexible pavements, utilizing both non-destructive (NDT) and destructive (DT) testing. Following a comprehensive review of the consulted techniques, proprietary models were developed and implemented across multiple projects to structurally evaluate in-service pavements. Statistical analysis was employed to determine the relationships between parameters, distinguishing between those based on empirical and mechanistic approaches.
Results: The application of evaluation techniques revealed that parameters such as radial strain (εrca), vertical strain (εzsr), and the structural number exhibit a strong correlation when categorized within the same approach. Conversely, their correlation is moderately strong when differing approaches are used. Additionally, models relying solely on deflection basin data demonstrated high correlation with rigorous methods that incorporate thickness data.
Conclusions: These findings underscore the practical value of the developed models in pavement management at the network level, offering cost-effective solutions that enhance the detection of structural deficiencies and inform maintenance and rehabilitation strategies.
Abstract (es)
Contexto: Los datos sobre el estado del pavimento son un componente fundamental de los sistemas de gestión (SGP) y desempeñan un papel importante en la evaluación estructural. Dependiendo de la calidad de la información, estos datos son valiosos para la toma de decisiones a nivel de red, de proyecto o de investigación en relación con la gestión del ciclo de vida del pavimento.
Método: El objetivo de este estudio fue evaluar 18 técnicas de evaluación estructural de pavimentos flexibles basadas en ensayos no destructivos (END) y destructivos (DT). Después de una revisión integral de las técnicas consultadas, se desarrollaron modelos propios que fueron implementados en múltiples proyectos para la evaluación estructural de pavimentos en servicio. Se empleó el análisis estadístico para determinar las relaciones entre parámetros, distinguiendo entre aquellos que se basan en enfoques empíricos y mecanísticos.
Resultados: La aplicación de las técnicas de evaluación reveló que parámetros como la deformación radial (εrca), la deformación vertical (εzsr) y el número estructural presentan una fuerte correlación cuando pertenecen al mismo enfoque. Por otro lado, su correlación es moderadamente fuerte si el enfoque difiere. Además, los modelos que se basan únicamente en datos de cuencas de deflexión se correlacionan muy bien con métodos rigurosos que también requieren datos de espesores.
Conclusiones: Los resultados resaltan el valor práctico de los modelos desarrollados para la gestión de pavimentos a nivel de red, proporcionando una solución eficiente en costos que facilita la detección de deficiencias estructurales y mejora las estrategias de mantenimiento y rehabilitación.
References
Z. Liu, Q. Yang, and X. Gu, “Assessment of pavement structural conditions and remaining life combining accelerated pavement testing and ground-penetrating radar,” Remote Sens., vol. 15, no. 18, 2023. https://doi.org/10.3390/rs15184620
L. Fuentes, K. Taborda, X. Hu, E. Horak, T. Bai, and L. F. Walubita, “A probabilistic approach to detect structural problems in flexible pavement sections at network level assessment,” Int. J. Pavement Eng., vol. 23, no. 6, pp. 1867–1880, 2022. https://doi.org/10.1080/10298436.2020.1828586
E. A. Guzmán Suárez, “Evaluación estructural de pavimentos flexibles,” Fundación Universitaria Juan de Castellanos, 2023. [Online]. Available: https://doi.org/10.38017/9789588966557
G. T. Rohde, “Determining pavement structural number from FWD testing,” Transp. Res. Rec., no. 1448, pp. 61–68, 1994. http://onlinepubs.trb.org/Onlinepubs/trr/1994/1448/1448-008.pdf
Z. Zhang, L. Manuel, I. Damnjanovic, and Z. Li, “Development of a new methodology for characterizing pavement structural condition for network level applications,” Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, Austin, TX, USA, Rep. no. FHWA/TX-04/0-4322-1, 2003. [Online]. Available: https://ctr.utexas.edu/wp-content/uploads/pubs/0_4322_1.pdf
G. T. Rohde and A. Hartman, “Comparison of procedures to determine structural number from FWD deflection,” in Combined 18th ARRB Transp. Res. Conf, Transit New Zealand Land. Transp. Symp., 1996, pp. 99–115. https://trid.trb.org/view/470309
A. L. Crook, S. R. Montgomery, and W. S. Guthrie, “Using falling-weight deflectometer data for network-level flexible pavement management,” Transp. Res. Rec., vol. 2304, no. 1, pp. 75–83, 2012. https://doi.org/10.3141/2304-09
COST Action 336, “Use of falling weight deflectometers in pavement evaluation: final report,” Off. Publ. Eur. Communities, Luxembourg, Rep. 392, 2005.
HTC Infrastructure Management Ltd., “Implementation of predictive modelling for road management – establishing pavement strength for use with dTIMS,” HTC Infrastruct. Manage. Ltd., Ontario, Canada, Tech. Rep., 2000.
J. Crovetti, “Development of rational overlay design procedures for flexible pavements,” Wis. Highway Res. Program, Madison, WI, Rep. WHRP 05-12, 2005.
A. Kavussi, M. Abbasghorbani, F. Moghadas Nejad, and A. Bamdad Ziksari, “A new method to determine maintenance and repair activities at network-level pavement management using falling weight deflectometer,” J. Civ. Eng. Manag., vol. 23, no. 3, pp. 338–346, 2017. https://doi.org/10.3846/13923730.2015.1073173
G. Salt and D. Stevens, “Pavement performance prediction: determination and calibration of structural capacity (SNP),” in 20th ARRB Transp. Res. Conf., 2001, art. 15.
N. Vitalis and M. Ephather, “Improvement of the algorithm for computing adjusted structure number for determination of backlog maintenance,” World J. Eng. Technol., vol. 10, no. 02, pp. 158–178, 2022. https://doi.org/10.4236/wjet.2022.102009
H. S. Abd El-Raof, R. T. Abd El-Hakim, S. M. El-Badawy, and H. A. Afify, “Structural number prediction for flexible pavements using the long term pavement performance data,” Int. J. Pavement Eng., vol. 21, no. 7, art. 16, 2018. https://doi.org/10.1080/10298436.2018.1511786
AASHTO, “Guide for design of pavement structure,” 1993. [Online]. Available: https://habib00ugm.files.wordpress.com/2010/05/aashto1993.pdf
E. A. Guzmán Suárez, Evaluación estructural de pavimentos flexibles. Tunja, Colombia: Fundación Universitaria Juan de Castellanos, 2023. https://doi.org/10.38017/9789588966557
E. Horak, J. Maina, and A. Hefer, “Structural number determined with the falling weight deflectometer and used as benchmark methodology,” in Int. Conf. Civil Eng. Energy and Environ. Struct., 2014, art. 6165. https://doi.org/10.13140/2.1.1459.6165
J. M. Bryce, G. W. Flintsch, S. W. Katicha, B. K. Diefenderfer, and A. Sarant, “Development of pavement structural capacity requirements for innovative pavement decision-making and contracting: phase II,” Va. Transp. Res. Council, Charlottesville, VA, Rep. FHWA/VTRC 16-R20, 2016.
O. Mora et al., “Comparative analysis on strains in asphalt pavement design using linear elastic and viscoelastic theories,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1126, no. 1, art. 012028, 2021. https://doi.org/10.1088/1757-899x/1126/1/012028
Y. R. Kim and H. Park, “Use of falling weight deflectometer multi-load data for pavement strength estimation,” 2002. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/5253
INVÍAS, “Manual de diseño de pavimentos asfálticos en vías con medios y altos volúmenes de tránsito,” 2015.
S. S. S. Peddibhotla, M. Murphy, and Z. Zhang, “Validation and implementation of the structural condition index (SCI) for network-level pavement evaluation,” 2011. [Online]. Available: http://ctr.utexas.edu/wp-content/uploads/pubs/5_4322_01_1.pdf
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Edwin Antonio Guzmán Suárez, Diego Fernando Gualdrón Alfonso, Jorge Andrés Sarmiento-Rojas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.