DOI:

https://doi.org/10.14483/23448393.20333

Published:

2024-01-13

Issue:

Vol. 29 No. 1 (2024): January-April

Section:

Biomedical Engineering

Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle

Modelo dinámico del movimiento del miembro inferior en el plano sagital durante el ciclo de marcha

Authors

Keywords:

Biomechanics, Euler-Lagrange, Human gait, PID control, Simulink (en).

Keywords:

Biomecánica, Euler-Lagrange, Marcha humana, Control PID, Simulink (es).

Abstract (en)

Context: This work presents the development of a dynamic model for human lower limb motion in the sagittal plane during the gait cycle. The primary objective of this model is to serve as a powerful tool for the design of rehabilitation and assistive devices, such as exoskeletons, prostheses, and orthoses. It achieves this by facilitating the estimation of joint torques, the detailed analysis of kinematic variables, optimal actuator selection, and the exploration of advanced control techniques.

Method: The dynamic model consists of two primary components: (1) the plant model and (2) a closed-loop controller. The plant model represents the forward dynamics of human gait and is based on a multi-mass pendulum composed of three segments of the lower limb (thigh, lower leg, and foot) and three joints (hip, knee, and ankle). It is analyzed using the Euler-Lagrange formulation and the nonlinear second-order differential equations are implemented in MATLAB’s Simulink. To reproduce reference human gait trajectories and simulate the functioning of the neuromusculoskeletal system and the central nervous system, a closed-loop PID controller is incorporated into the plant model. It is noteworthy that the scope of this dynamic model is specifically confined to the sagittal plane.

Results: The dynamic model is evaluated in terms of angular displacement tracking using the relative maximum error (RME) and the root mean square error (RMSE) for reference trajectories of healthy adult male human gait as reported in the literature. The model demonstrates tracking with errors below 2.2 [°] in magnitude and 3,5% for all three considered segments (thigh, lower leg, and foot).

Conclusions: The quantitative results show that the dynamic model developed in this work is reliable and allows for a precise reproduction of human gait trajectories.

Abstract (es)

Contexto: Este trabajo presenta el desarrollo de un modelo dinámico del movimiento del miembro inferior humano en el plano sagital durante el ciclo de marcha. El objetivo principal de este modelo es servir como una herramienta poderosa para el diseño de dispositivos de rehabilitación y asistencia, como exoesqueletos, prótesis y órtesis. Esto lo logra facilitando la estimación de torques en las articulaciones, el análisis detallado de variables cinemáticas, la selección óptima de actuadores y la exploración de técnicas avanzadas de control.

Método: El modelo dinámico se consiste en dos componentes principales: (1) el modelo de la planta y (2) un controlador de lazo cerrado. El modelo de la planta representa la dinámica directa de la marcha humana y se basa en un péndulo de múltiples masas compuesto por tres segmentos del miembro inferior (muslo, pantorrilla y pie) y tres articulaciones (cadera, rodilla y tobillo). Este es analizado utilizando la formulación de Euler-Lagrange y las ecuaciones diferenciales de segundo orden no lineales se implementan en Simulink de MATLAB. Para reproducir las trayectorias de referencia de la marcha humana y simular el funcionamiento del sistema musculoesquelético y del sistema nervioso central, se implementa un controlador PID de lazo cerrado en el modelo de la planta. Es importante destacar que el alcance de este modelo dinámico se limita específicamente al plano sagital.

Resultados: El modelo dinámico es evaluado en términos del seguimiento del desplazamiento angular usando el error relativo máximo (RME) y el error medio cuadrático (RMSE) para trayectorias de referencia de la marcha humana de adultos masculinos sanos reportadas en la literatura. El modelo demuestra un seguimiento con errores por debajo de 2.2 [°] en magnitud y 3,5 % para los tres segmentos considerados (muslo, pantorrilla y pie).

Conclusiones: Los resultados cuantitativos muestran que el modelo dinámico desarrollado en este trabajo es confiable y permite reproducir precisamente las trayectorias de la marcha humana.

Author Biography

Jose Luis Sarmiento-Ramos, Universidad Santo Tomás

Mechanical Engineer and Master of Science in Mechanical Engineering from Universidad Industrial de Santander, Bucaramanga, Colombia. From 2015 to 2016, he served as a Teaching Assistant in the School of Mechanical Engineering at Universidad Industrial de Santander, Bucaramanga, Colombia. From 2019 to 2022, he worked as Professor and Researcher in the Department of Biomedical Engineering at Universidad Manuela Beltrán, Bucaramanga, Colombia.

References

C. A. Oatis, Kinesiology: the mechanics and pathomechanics of human movement, 2nd ed., USA: Lippincott Williams and Wilkins, 2009.

J. L. Sarmiento-Ramos, A. P. Rojas-Ariza and Y. Z. Rueda-Parra, “Dynamic model of flexion/extension and abduction/adduction of the shoulder joint complex,” in 2021 IEEE 2nd Int. Cong. Biomed. Eng. Bioeng., 2021, pp. 1-4. https://doi.org/10.1109/CI-IBBI54220.2021.9626105

J. L. Sarmiento-Ramos and M. F. Anaya-Rojas, “Modelling, design and construction of a wrist rehabilitation exoskeleton,” Scientia et Technica, vol. 27, no. 3, pp. 177-185, Sept. 2022. https://doi.org/10.22517/23447214.24748

J. L. Sarmiento-Ramos, J. C. Suárez-Galvis and V. Grisales-Muñoz, “Exoskeleton for ankle joint flexion/extension rehabilitation,” ITECKNE, vol. 19, no. 2, art. 2773, Jun. 2022. https://doi.org/10.15332/iteckne.v19i2.2773

J. Sun, “Dynamic modeling of human gait using a model predictive control approach,” Ph.D. dissertation, Fac. of the Grad. Sch., Marquette Univ., Milwaukee, USA, 2015. [Online]. Available: https://epublications.marquette.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1481&context=dissertations_mu

F. De Groote and A. Falisse, “Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait,” Proc. R. Soc. B., vol. 288, art. 2432, Mar. 2021. https://doi.org/10.1098/rpsb.2020.2432

Y. Xiang, J. S. Arora and K. Abdel-Malek, “Physics-based modeling and simulation of human walking: A review of optimization-based and other approaches,” Struc. Multidisc. Optim., vol. 42, pp. 1-23. 2010. https://doi.org/10.1007/s00158-010-0496-8

F. L. Buczek, K. M. Cooney, M. R. Walker, M. J. Rainbow, M. C. Concha and J. O. Sanders, “Performance of an inverted pendulum model directly applied to normal human gait,” Clin. Biomech., vol. 21, no. 3, pp. 288-296, 2006. https://doi.org/10.1016/j.clinbiomech.2005.10.007

P. Sun, Y. Gu, H. Mao, Z. Chen and Y. Li, “Research on walking gait planning and simulation of a novel hybrid biped robot,” Biomimetics, vol. 8, no. 2, art. 258, 2023. https://doi.org/10.3390/biomimetics8020258

G. Yu, J. Zhang and W. Bo, “Biped robot gait planning based on 3D linear inverted pendulum model,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 301, art. 012098, 2018. https://doi.org/10.1088/1757-899X/301/1/012098

T. Dong, D. Wang and D. Zhao, “Gait research and simulation analysis of biped robot,” in Proc. SPIE 12305 Int. Symps. Artif. Intell. App. Tech., art. 123050A, 2022. https://doi.org/10.1117/12.2645550

Y. Liu, S. Peng, Y. Du, and W. H. Liao, “Kinematics modeling and gait trajectory tracking for lower limb exoskeleton robot based on PD control with gravity compensation,” in Proc. 38th Chin. Ctrl. Conf., 2019, pp. 4504-4511. https://doi.org/10.23919/ChiCC.2019.8865916

G. Marconi, A. A. Gopalai and S. Chauhan, “A triple compound pendulum model to analyze the effect of an ankle-foot orthosis on swing phase kinematics,” Med. Eng. Phys., vol. 112, art. 103951, 2023. https://doi.org/10.1016/j.medengphy.2023.103951

M. Irine. R. Hirouji, D. Ura, K. Osuka and T. Kinugasa, “Experimental verification of the characteristic behaviors in passive dynamic walking,” Art. Life Robot., vol. 26, pp. 187 – 194, 2021. https://doi.org/10.1007/s10015-020-00670-y

S. Montazeri, M. Sadeghi, A. Niaty, F. Towhidkhah and S. Jafari, “The simple chaotic model of passive dynamic walking,” Nonlinear Dyn., vol. 93, no. 3, pp-1183-1199, 2018. https://doi.org/10.11007/s11071-018-4252-8

E. Added, H. Gritli and S. Belghith, “Further analysis of the passive dynamics of the compass biped walker and control of chaos via two trajectory tracking approaches,” Complexity, vol. 2021, art. 5533451, 2021. https://doi.org/10.1155/2021/5533451

C. Dinesh, M. Deivakani, P. Sunagar, R. Baskar, A. Kumar and G. Kalra, “Biped robot-based walking on uneven terrain: Stability and zero moment point (ZMP) analysis,” AIP Conf. Proc., vol. 2831, no. 1, art. 020013, 2023. https://doi.org/10.1063/5.0162762

A. Fawzi Abdul Kareem and A. Abdul Hussein Ali, “Experimental and theoretical optimal regulator control of balance zero moment point for bipedal robot,” J. Eng. Sustain. Dev., vol. 24, no. 6, pp. 68-82, 2020. https://doi.org/10.31272/jeasd.24.6.6

Y. D. Hong, “Capture point-based controller using real-time zero moment point manipulation for stable bipedal walking in human environment,” Sensors, vol. 19, no. 15, art. 3407, 2019. https://doi.org/10.3390/s19153407

B. Ren, J. Liu and J. Chen, “Simulating human-machine coupled model for gait trajectory optimization of the lower limb exoskeleton system based on genetic algorithm,” Int. J. of Adv. Robot. Sys., vol. 17, no. 1, 2020. https://doi.org/ 10.1177/1729881419893493

M. A. Khan, H. Arshad, R. Damasevicius A. Alqahtani, S. Alsubai, A. Binbusayyis, Y. Nam and B. Kang, “Human gait analysis: a sequential framework of lightweight deep learning and improved moth-flam optimization algorithm,” Comput. Intell. Neurosci., vol. 2022, art. 8238375, 2022. https://doi.org/10.1155/2022/8238375

J. Sun, S. Wu and P. A. Voglewede, “Dynamic simulation of human gait model with predictive capability,” ASME J. Biomech. Eng., vol. 140, no. 3, art. 031008, 2018. https://doi.org/10.1115/1.4038739

J. G. Juang, “Fuzzy neural network approaches for robotic gait synthesis,” IEEE Trans. Syst. Man. Cybern., vol. 30, no. 4, pp. 594-601. 2004. https://doi.org/10.1109/3477-.865178

M. L. Felis, K. Mombaur and A. Berthoz, “An optimal control approach to reconstruct human gait dynamics from kinematic data,” in 2015 IEEE-RAS 15th Int. Conf. Humanoid Rob., pp. 1044-1051, 2015. https://doi.org/ 10.1109/HUMANOIDS.2015.736490

T. Saidouni and G. Bessonnet, “Generating globally optimized sagittal gait cycles of a biped robot,” Robotica, vol. 41, no. 3, pp. 465-479, Jul. 2010. https://doi.org/10.1007/s00158-009-0423-z

D. A. Winter, Biomechanics and motor control of human movements, USA: John Wiley and Sons, Inc., 2009.

Y. Li, C. Xu and X. Guan, “Modeling and simulation study of electromechanically system of the human extremity exoskeleton,” J. Vibroengineering, vol. 18, no. 1, pp. 551-561, Feb. 2016. [Online]. Available: https://www.extrica.com/article/16394

M. Oluwatsin, “Modelling and control of actuated lower limb exoskeletons: a mathematical application using central patterns generators and nonlinear feedback control techniques,” Ph.D. dissertation, Univ. Paris-Est Et Mstic, 2016. Available: https://tel.archives-ouvertes.fr/tel-01531927/document

G. Bovi, M. Rabuffetti, P. Mazzoleni and M. Ferrarin, “A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects,” Gait Post., vol. 33, no. 1, pp. 6-13, Jan. 2011. https://10.1016/j.gaitpost.2010.08.009

How to Cite

APA

Sarmiento-Ramos, J. L., Meneses-Castro, A. F., and Jaimes-Mantilla, P. J. (2024). Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle. Ingeniería, 29(1), e20333. https://doi.org/10.14483/23448393.20333

ACM

[1]
Sarmiento-Ramos, J.L. et al. 2024. Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle. Ingeniería. 29, 1 (Jan. 2024), e20333. DOI:https://doi.org/10.14483/23448393.20333.

ACS

(1)
Sarmiento-Ramos, J. L.; Meneses-Castro, A. F.; Jaimes-Mantilla, P. J. Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle. Ing. 2024, 29, e20333.

ABNT

SARMIENTO-RAMOS, Jose Luis; MENESES-CASTRO, Andrés Felipe; JAIMES-MANTILLA, Pedro José. Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle. Ingeniería, [S. l.], v. 29, n. 1, p. e20333, 2024. DOI: 10.14483/23448393.20333. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/20333. Acesso em: 23 feb. 2024.

Chicago

Sarmiento-Ramos, Jose Luis, Andrés Felipe Meneses-Castro, and Pedro José Jaimes-Mantilla. 2024. “Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle”. Ingeniería 29 (1):e20333. https://doi.org/10.14483/23448393.20333.

Harvard

Sarmiento-Ramos, J. L., Meneses-Castro, A. F. and Jaimes-Mantilla, P. J. (2024) “Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle”, Ingeniería, 29(1), p. e20333. doi: 10.14483/23448393.20333.

IEEE

[1]
J. L. Sarmiento-Ramos, A. F. Meneses-Castro, and P. J. Jaimes-Mantilla, “Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle”, Ing., vol. 29, no. 1, p. e20333, Jan. 2024.

MLA

Sarmiento-Ramos, Jose Luis, et al. “Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle”. Ingeniería, vol. 29, no. 1, Jan. 2024, p. e20333, doi:10.14483/23448393.20333.

Turabian

Sarmiento-Ramos, Jose Luis, Andrés Felipe Meneses-Castro, and Pedro José Jaimes-Mantilla. “Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle”. Ingeniería 29, no. 1 (January 13, 2024): e20333. Accessed February 23, 2024. https://revistas.udistrital.edu.co/index.php/reving/article/view/20333.

Vancouver

1.
Sarmiento-Ramos JL, Meneses-Castro AF, Jaimes-Mantilla PJ. Dynamic Model of Lower Limb Motion in the Sagittal Plane during the Gait Cycle. Ing. [Internet]. 2024 Jan. 13 [cited 2024 Feb. 23];29(1):e20333. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/20333

Download Citation

Visitas

3

Dimensions


PlumX


Downloads

Download data is not yet available.
Loading...