Topologies for battery and supercapacitor interconnection in residential microgrids with intermittent generation

Topologías para la interconexión de baterías y supercondensadores en microrredes de tipo residencial con generación intermitente

Palabras clave: Lithium-ion battery, supercapacitor, DC/DC bidirectional converter, Energy Storage System (ESS), power density, energy density (en_US)
Palabras clave: Sistema Híbrido de almacenamiento de energía, batería de ion-litio, supercondensador, Convertidor DC/DC bidireccional, Densidad de potencia, Densidad de Energía (es_ES)

Resumen (en_US)

Context:This paper presents a comparative study of the performance of three topologies for interconnecting Lithium ion batteries and supercapacitors in a hybrid energy storage system for use in electric residential microgrids with intermittent generation. The hybrid system’s main purpose is to prolong battery life, using the supercapacitor to handle the dynamic component of current from a pulsed current load. This work builds upon a preliminary simulation-based study, in which two semi-active topologies were compared and evaluated. Here, we add an active topology to the study and describe the operational benefits of each topology.

Method: For every topology in this study, a non-isolated half-bridge bidirectional DC converter was used, and a proportional–integral (PI) double-loop linear ACC control algorithm was designed for controlling the converters. In the active topology an additional optimisation-based real-time frequency-decoupling control  strategy was employed.

Results:A parallel active topology allows better management of stored energy in the SC by supporting variation of SC terminal voltages with a DC converter as interface to the DC bus.

Conclusions: Semi-active topologies are easier to design and control, but the operational benefits of supercapacitors require voltage variation at the terminals. This variation is made possible with an active topology.

Resumen (es_ES)

Contexto: Este artículo presenta un estudio mediante simulación del comportamiento de tres topologías para la interconexión de baterías y supercondensadores en un sistema híbrido de almacenamiento de energía con potencial aplicación a microrredes eléctricas residenciales. El estudio se basa en una comparación preliminar de dos topologías semi-activas hecha por los autores. En este artículo se añade una topología activa al estudio comparativo.

Método: En cada una de las topologías del presente estudio se ha usado un convertidor DC bidireccional de medio puente y como estrategia de control básica se usó un control de corriente promedio de doble lazo. Para la topología activa se utilizó una estrategia de control adicional para el desacople de las componentes dinámicas y promedio de la carga o generación pulsante.

Resultados: La topología activa permite utilizar mejor la energía almacenada en el condensador, gracias a la posibilidad de variar la tensión en sus terminales

Conclusiones: El diseño y control de las topologías semi-activas reslta mucho más sencillo que el de la topología activa en paralelo. No obstante, para aprovechar la la capacidad de almacenamiento del supercondensador, la tensión entre sus terminales debe tener una variación importante, lo que se puede conseguir con la topología activa.

Descargas

La descarga de datos todavía no está disponible.

Referencias

U.G.K. Mulleriyawage, W. Shen, C. Hu, “Battery system selection in DC microgrids for residential applications: An Australian case study”, Proc. 14th IEEE Conf. Ind. Electron. Appl. ICIEA 2019, pp. 1926–1931, 2019. https://doi.org/10.1109/ICIEA.2019.8834035

DOE, “Summary Report: 2012 DOE Microgrid Workshop,” 2012.

C. Wang, L. He, “High-performance Adaptive Control for Inverter-based Residential Microgrids”, 2019 IEEE Energy Convers. Congr. Expo. ECCE 2019, pp. 3516–3523, 2019. https://doi.org/10.1109/ECCE.2019.8912868

G. Di Somma, M. Caliano, M. Graditi, G. Pinnarelli, A. Menniti, D. Sorrentino, N. Barone, “Designing of Cost‐Effective and Low‐Carbon Multi‐Energy Nanogrids for Residential Applications”, Inventions, vol. 5, no.7, p. 22, 2020. https://doi.org/10.3390/inventions5010007

C. Trujillo et al., Microrredes eléctricas, 1st ed. Bogotá: Universidad Distrital Francisco José de Caldas, 2015.

S.Y. Kan, M. Verwaal, H. Broekhuizen, “The Use of Battery-capacitor Combinations in Photovoltaic Powered Products”, J. Power Sources, vol. 162, no.2 SPEC. ISS., pp. 971–974, 2006. https://doi.org/10.1016/j.jpowsour.2005.07.001

M. M. Chowdhury, M. E. Haque, M. Aktarujjaman, M. Negnevitsky, A. Gargoom, “Grid Integration Impacts and Energy Storage Systems for Wind Energy Applications—A Review”, IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011. https://doi.org/10.1109/PES.2011.6039798

J.P. Zheng, T.R. Jow, M.S. Ding, “Hybrid Power Sources for Pulsed Current Applications”, IEEE Trans. Aerosp. Electron. Syst., vol. 37, no.1, pp. 298–292, 2001. https://doi.org/10.1109/7.913688

R.A. Dougal, S. Liu, R.E. White, “Power and Life Extension of Battery-Ultracapacitor Hybrids”, IEEE Trans. Components Packag. Technol., vol. 25, no.1, pp. 120–131, 2002. https://doi.org/10.1109/6144.991184

A. Khaligh, Z. Li, “Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art”, IEEE Trans. Veh. Technol., vol. 59, no.6, pp. 2806–2814, 2010. https://doi.org/10.1109/TVT.2010.2047877

N. Mendis, K.M. Muttaqi, S. Perera, “Management of Battery-supercapacitor Hybrid Energy Storage and Synchronous Condenser for Isolated Operation of PMSG Based Variable-speed Wind Turbine Generating Systems”, IEEE Trans. Smart Grid, vol. 5, no.2, pp. 944–953, 2014. https://doi.org/10.1109/TSG.2013.2287874

A. Lahyani, P. Venet, A. Guermazi, A. Troudi, “Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS)”, IEEE Trans. Power Electron., vol. 28, no.4, pp. 1509–1522, 2013. https://doi.org/10.1109/TPEL.2012.2210736

Y. Zhan, Y. Guo, J. Zhu, L. Li, “Power and Energy Management of Grid / PEMFC / Battery / Supercapacitor Hybrid Power Sources for UPS Applications”, Electr. Power Energy Syst., vol. 67, pp. 598–612, 2015. https://doi.org/10.1016/j.ijepes.2014.12.044

A. Etxeberria, I. Vechiu, H. Camblong, J.M. Vinassa, H. Cambalog, “Hybrid Energy Storage Systems for Renewable Energy Sources Integration in Microgrids : A Review”, Power Electron. Conf. Int., pp. 532–537, 2010. https://doi.org/10.1109/IPECON.2010.5697053

A. Narvaez, C. Cortes, C.L. Trujillo, “Comparative Analysis of Topologies for the Interconnection of Batteries and Superca-pacitors in a Hybrid Energy Storage System”, in IEEE 8th International Symposium on Power Electronics for Distributed Generation, 2017. https://doi.org/10.1109/PEDG.2017.7972542

R.K. Singh, N.S. Chauhan, S. Mishra, “A Novel Average Current-mode Controller Based Optimal Battery Charger for Auto-motive Applications”, in 2012 International Conference on Devices, Circuits and Systems, ICDCS 2012, 2012, pp. 135–139. https://doi.org/10.1109/ICDCSyst.2012.6188690

M. Ortúzar, J. Moreno, J. Dixon, “Ultracapacitor-based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation”, IEEE Trans. Ind. Electron., vol. 54, no.4, pp. 2147–2156, 2007. https://doi.org/10.1109/TIE.2007.894713

Q. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, C. Wen, “A Decentralized Dynamic Power Sharing Strategy for Hybrid Energy Storage System in Autonomous DC Microgrid”, Ind. Electron. IEEE Trans., vol. 64, no.7, pp. 5930–5941, 2017. https://doi.org/10.1109/TIE.2016.2608880

Q. Xu, J. Xiao, X. Hu, P. Wang, M. Y. Lee, “A Decentralized Power Management Strategy for Hybrid Energy Storage System with Autonomous Bus Voltage Restoration and State of Charge Recovery”, Ind. Electron. IEEE Trans., vol. 64, no. 9, 2017. https://doi.org/10.1109/TIE.2017.2686303

T. Bocklisch, “Hybrid Energy Storage Systems for Renewable Energy Applications,” Energy Procedia, vol. 73, pp. 103–111, 2015. https://doi.org/10.1016/j.egypro.2015.07.582

J. M. Guerrero, M. Chandorkar, T. Lee, P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids; Part I: De-centralized and Hierarchical Control”, Ind. Electron. IEEE Trans., vol. 60, no.4, pp. 1254–1262, 2013. https://doi.org/10.1109/TIE.2012.2194969

A. Narvaez, C. Cortes, C. Trujillo, “Real-Time Frequency-Decoupling Control for a Hybrid Energy Storage System in an Active Parallel Topology Connected to a Residential Microgrid with Intermittent Generation”, in Applied Computer Sciences in Engineering, 2018, pp. 596–605. https://doi.org/10.1007/978-3-030-00350-0_49

A. Kuperman, I. Aharon, “Battery-ultracapacitor Hybrids for Pulsed Current Loads: A Review”, Renew. Sustain. Energy Rev., vol. 15, no.2, pp. 981–992, 2011. https://doi.org/10.1016/j.rser.2010.11.010

Cómo citar
Narvaez, E. A., Cortés Guerrero, C. A., & Trujillo Rodríguez, C. L. (2020). Topologías para la interconexión de baterías y supercondensadores en microrredes de tipo residencial con generación intermitente. Ingeniería, 25(1). https://doi.org/10.14483/23448393.15668
Sección
Ingeniería Eléctrica y Electrónica

Artículos más leídos del mismo autor/a