Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia

An iterative algorithm for fuzzy mixed production planning based on the cumulative membership function

Authors

  • Juan Carlos Figueroa García Universidad Distrital Francisco José de Caldas
  • Dusko Kalenatic Universidad de la Sabana
  • César Amilcar López Bello Universidad Distrital Francisco José de Caldas

Keywords:

Fuzzy linear programming, Cumulative membership function, Production planning. (en).

Keywords:

Programación Lineal Difusa, Función Acumulativa de Pertenencia, Planeación de la Producción (es).

Abstract (es)

Este artículo presenta una aplicación de un algoritmo nuevo para problemas de programación lineal difusa (FLP) con restricciones y coeficientes difusos, con restricciones difusas lineales y coeficientes tecnológicos difusos con funciones de pertenencia no-lineales.

El modelo propuesto usa un método iterativo que encuentra una solución estable aproblems con parámetros difusos en ambos lados de las restricciones de un problema de programación lineal. El algoritmo se basa en el método de restricciones suaves propuesto por Zimmermann, combinado con una rutina iterativa que llega a soluciones óptmas únicas.

Abstract (en)

This paper shows an application of a novel algorithm for Fuzzy Linear Programming (FLP) problems with both fuzzy technological coefficients and constraints, which deals with any kind of fuzzy membership functions for technological parameters and fuzzy linear constraints.

The presented approach uses an iterative algorithm which finds stable solutions to problems with fuzzy parameter sinboth sides of an FLP problem. The algorithm is based on the soft constraints method proposed by Zimmermann combined with an iterative procedure which gets a single optimal solution.

Author Biographies

Juan Carlos Figueroa García, Universidad Distrital Francisco José de Caldas

He is an Assistant Professor at the Engineering Faculty of the Universidad Distrital Francisco José de Caldas - Bogotá, Colombia. He obtained his
bachelor degree on Industrial Engineering at the same university in 2002, a Master degree on Industrial Engineering at the same university in 2010,
and actually he is performing Doctoral studies on Industry and Organizations at the Universidad Nacional de Colombia. His main interests are: fuzzy
sets, fuzzy optimization, time series analysis and evolutionary optimization.

Dusko Kalenatic, Universidad de la Sabana

He is full time Professor at the Engineering Faculty of the Universidad de La Sabana. He obtained his bachelor degree on Economy at the Visa
Economska Skola - Yugoslavia in 1975, a Master degree on Work Organization at the University of Belgrado, Yugoslavia in 1978, a Specialization
degree on Production at the Universidad Distrital Francisco José de Caldas - Bogotá, Colombia in 1994, and a Doctoral Degree on Technical
Sciences at the Universidad Central de Las Villas - Cuba in 1999. His main interests are: focused and humanitarian logistics, production planning
and mathematical modeling.

César Amilcar López Bello, Universidad Distrital Francisco José de Caldas

He is an Associate Professor at the Engineering Faculty of the Universidad Distrital Francisco José de Caldas - Bogotá, Colombia. He obtained his
bachelor degree on Industrial Engineering at the same university in 1986, a Specialization degree on Production at the same university in 1994, and
a Master degree on Industrial Engineering at the Universidad de los Andes - Bogotá, Colombia in 1998. His main interests are: linear optimization,
transportation problems and production planning.

References

María Angeles Gil, Miguel López-Díaz, and Dan A. Ralescu. Overview on the development of fuzzy random variables. Fuzzy Sets and Systems, 157(16):2546–2557, 2007.

S. Chanas, M. Delgado, J.L. Verdegay, and M.A. Vila. Interval and fuzzy extensions of classical transportation problems. Transportation Planning and Technology, 17:202–218, 1993.

Juan Carlos Figueroa. Linear programming with interval type-2 fuzzy right hand side parameters. In 2008 Annual Meeting of the IEEE North American Fuzzy Information Processing Society (NAFIPS), 2008.

Juan Carlos Figueroa. Solving fuzzy linear programming problems with interval type-2 RHS. In 2009 Conference on Systems, Man and Cybernetics, pages 1–6. IEEE, 2009.

Juan Carlos Figueroa. An iterative procedure for fuzzy linear programming problems. In 2011 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pages 1–6. IEEE, 2011.

Juan Carlos Figueroa and Cesar Amilcar López. Linear programming with fuzzy joint parameters: A cumulative membership function approach. In 2008 Annual Meeting of the IEEE North American Fuzzy Information Processing Society (NAFIPS), 2008.

Juan Carlos Figueroa and Cesar Amilcar López. Pseudo-optimal solutions of FLP problems by using the cumulative membership function. In 2009 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), volume 28, pages 1–6. IEEE, 2009.

Juan Carlos Figueroa, Yamile Olarte, and Freddy Camargo. Linear programming with fuzzy joint parameters: An iterative method. In 2010 Conference on Systems, Man and Cybernetics, pages 1–6. IEEE, 2010.

M. Gen, Y. Tsujimura, and K. Ida. Method for solving multiobjective aggregate production planning problem with fuzzy parameters. Computers & Industrial Engineering, 23:117–120, 1992.

A. Ghodousiana and E. Khorram. Solving a linear programming problem with the convex combination of the max-min and the max-average fuzzy relation equations. Applied Mathematics and Computation, 180(1):411–418, 2006.

M. Inuiguchi and M. Sakawa. Possible and necessary optimality tests in possibilistic linear programming problems. Fuzzy Sets and Systems, 67:29–46, 1994.

M. Inuiguchi and M. Sakawa. A possibilistic linear program is equivalent to a stochastic linear program in a special case. Fuzzy Sets and Systems, 76(1):309–317, 1995.

Masahiro Inuiguchi and Jaroslav Ram´ık. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111:3–28, 2000.

R. Baker Kearfott and Vladik Kreinovich. Beyond convex? global optimization is feasible only for convex objective functions: A theorem. Journal of Global Optimization, 33(4):617–624, 2005.

Y.H. Lee, S.H. Kim, and C. Moon. Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13:35–46, 2002.

Weldon A. Lodwick and K. A. Bachman. Solving Large-Scale Fuzzy and Possibilistic Optmization Problems. Fuzzy Optimization and Decision Making, 4:257–78, 2005.

N. Mahdavi-Amiri and S.H. Nasseri. Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy Sets and Systems, 158(17):1961–1978, 2007.

J. Mula, R. Poler, and J.P. Garc´ıa. MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157:74–97, 2006.

D. Peidro, J. Mula, and R. Poler. Supply chain planning under uncertainty: a fuzzy linear programming approach. 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1:1–6, 2007.

D. Peidro, J. Mula, R. Poler, and J.L. Verdegay. Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160:2640–2657, 2009.

Guu Sy-Ming and Wu Yan-Kuen. Minimizing a linear objective function with fuzzy relation equation constraints. Fuzzy Optimiza-tion and Decision Making, 1(4):347, 2002.

H. Tanaka and K. Asai. Fuzzy Solution in Fuzzy Linear Programming Problems. IEEE Transactions on Systems, Man and Cybernetics., 14:325–328, 1984.

H. Tanaka, K. Asai, and T. Okuda. On Fuzzy Mathematical Programming. Journal of Cybernetics., 3:37–46, 1974.

H. J. Zimmermann. Fuzzy programming and Linear Programming with several objective functions. Fuzzy Sets and Systems, 1(1):45–55, 1978.

H. J. Zimmermann and Robert Fuller. Fuzzy Reasoning for solving fuzzy Mathematical Programming Problems. Fuzzy Sets and Systems, 60(1):121–133, 1993.

How to Cite

APA

Figueroa García, J. C., Kalenatic, D., and López Bello, C. A. (2011). Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia. Ingeniería, 16(2), 6–17. https://doi.org/10.14483/23448393.3830

ACM

[1]
Figueroa García, J.C. et al. 2011. Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia. Ingeniería. 16, 2 (Dec. 2011), 6–17. DOI:https://doi.org/10.14483/23448393.3830.

ACS

(1)
Figueroa García, J. C.; Kalenatic, D.; López Bello, C. A. Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia. Ing. 2011, 16, 6-17.

ABNT

FIGUEROA GARCÍA, Juan Carlos; KALENATIC, Dusko; LÓPEZ BELLO, César Amilcar. Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia. Ingeniería, [S. l.], v. 16, n. 2, p. 6–17, 2011. DOI: 10.14483/23448393.3830. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/3830. Acesso em: 10 jan. 2025.

Chicago

Figueroa García, Juan Carlos, Dusko Kalenatic, and César Amilcar López Bello. 2011. “Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia”. Ingeniería 16 (2):6-17. https://doi.org/10.14483/23448393.3830.

Harvard

Figueroa García, J. C., Kalenatic, D. and López Bello, C. A. (2011) “Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia”, Ingeniería, 16(2), pp. 6–17. doi: 10.14483/23448393.3830.

IEEE

[1]
J. C. Figueroa García, D. Kalenatic, and C. A. López Bello, “Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia”, Ing., vol. 16, no. 2, pp. 6–17, Dec. 2011.

MLA

Figueroa García, Juan Carlos, et al. “Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia”. Ingeniería, vol. 16, no. 2, Dec. 2011, pp. 6-17, doi:10.14483/23448393.3830.

Turabian

Figueroa García, Juan Carlos, Dusko Kalenatic, and César Amilcar López Bello. “Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia”. Ingeniería 16, no. 2 (December 18, 2011): 6–17. Accessed January 10, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/3830.

Vancouver

1.
Figueroa García JC, Kalenatic D, López Bello CA. Algoritmo iterativo para la planeación de la producción mixta basado en la función acumulativa de pertenencia. Ing. [Internet]. 2011 Dec. 18 [cited 2025 Jan. 10];16(2):6-17. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/3830

Download Citation

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 27 28 29 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
76%
33%
Days to publication 
366
145

Indexed in

Editor & editorial board
profiles

PFL

1 2 3 4 5
Not useful Very useful
Loading...