DOI:
https://doi.org/10.14483/23448393.3844Published:
2012-06-29Issue:
Vol. 17 No. 1 (2012): January - JuneSection:
Special Section: Best Papers "VI Symposium on Optimization".Seguimiento distribuido del punto de máxima potencia en micro-redes eólicas
Distributed maximum power point tracking in wind micro-grids
Keywords:
distributed operation, maximum power point tracking, wind generator. (en).Keywords:
Aero-generador, operación distribuida, seguimiento del punto de máxima potencia. (es).Downloads
Abstract (es)
Con el objetivo de reducir los requerimientos de hardware en microredes basadas en aero-generadores, se propone un algoritmo para el seguimiento distribuido del punto de máxima potencia. Esta solución reduce la cantidad de sensores de corriente y unidades de procesamiento requeridas para extraer la máxima potencia en la micro-red en comparación con soluciones tradicionales, reduciendo el costo de la aplicación. El análisis de los puntos óptimos de operación de aero-generadores se realizó experimentalmente, lo que provee además parámetros realistas para los modelos de simulación. Finalmente, la solución propuesta se validó a través de simulaciones detalladas en el software PSIM, comparando el desempeño logrado contra soluciones tradicionales.Abstract (en)
With the aim of reducing the hardware requirements in micro-grids based on wind generators, a distributed maximum power point tracking algorithm is proposed. Such a solution reduces the amount of current sensors and processing devices to maximize the power extracted from the micro-grid, reducing the application cost. The analysis of the optimal operating points of the wind generator was performed experimentally, which in addition provides realistic model parameters. Finally, the proposed solution was validated by means of detailed simulations performed in the power electronics software PSIM, contrasting the achieved performance with traditional solutions.References
M. Kesraoui, N. Korichi, and A. Belkadi, "Maximum power point tracker of wind energy conversion system," Renewable Energy, vol. 36, pp. 2655-2662.
M. Abdel-Salam, A. Ahmed, and M. Abdel-Sater, "Maximum power point tracking for variable speed grid connected small wind turbine," in Energy Conference and Exhibition (EnergyCon), 2010 IEEE International, pp. 600-605.
V. Agarwal, R. K. Aggarwal, P. Patidar, and C. Patki, "A Novel Scheme for Rapid Tracking of Maximum Power Point in Wind Energy Generation Systems," Energy Conversion, IEEE Transactions on, vol. 25, pp. 228-236, 2010.
C. A. Ramos-Paja, A. J. Saavedra-Montes, and E. Arango, "Maximum power point tracking in wind farms by means of a multivariable algorithm," in 2012 Workshop on Engineering Applications (WEA), 2012, pp. 1-6.
J. A. Baroudi, V. Dinavahi, and A. M. Knight, "A review of power converter topologies for wind generators," Renewable Energy, vol. 32, pp. 2369-2385, 2007.
T. Ackermann, Wind Power in Power Systems, First ed.: Wiley, 2005.
A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, "Cascaded DC-DC Converter Photovoltaic Systems: Power Optimization Issues," Industrial Electronics, IEEE Transactions on, vol. 58, pp. 403-411, 2011.
N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems," Industrial Electronics, IEEE Transactions on, vol. 56, pp. 4473-4482, 2009.
J. C. U. Peña, M. A. G. de Brito, G. de A. e Melo, and C. A. Canesin, "A comparative study of MPPT strategies and a novel singlephase integrated buck-boost inverter for small wind energy conversion systems," in Power Electronics Conference (COBEP), 2011 Brazilian, pp. 458-465.
M. Arifujjaman, "Modeling, simulation and control of grid connected Permanent Magnet Generator (PMG)-based small wind energy conversion system," in Electric Power and Energy Conference (EPEC), 2010 IEEE, pp. 1-6.
R. Morales, R. Ordoez, M. A. Morales, and V. Flores, "Control System Design and Simulation of an AC/DC - DC/DC - DC/AC Power Converter for a Permanent Magnet Wind Power Generator in Rural Power Generation," in Electrical, Communications, and Computers, 2009. CONIELECOMP 2009. International Conference on, 2009, pp. 79-83.
C. A. Ramos-Paja, A. J. Saavedra-Montes, R. Giral, J. D. V. Hincapié, and R. A. R. Angel, "Design, modeling, control and implementation of a fuel cell generation system," Revista Facultad de Ingenieria, vol. 59, pp. 9-22, 2011.
E. Bianconi, J. Calvente, R. Giral, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, and M. Vitelli, "A fast current-based MPPT technique based on sliding mode control," in Industrial Electronics (ISIE), 2011 IEEE International Symposium on, 2011, pp. 59-64.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.