Mathematical model for centralized supply chains with sharing resources decisions

Modelo matemático para cadenas logísticas centralizadas con decisiones de recursos compartidos

Palabras clave: Centralized supply chains, optimization under uncertainty, sharing resources (en_US)
Palabras clave: Cadenas de suministro centralizadas, optimización bajo incertidumbre, recursos compartidos (es_ES)

Resumen (en_US)

Context:  Cooperation in supply chain management becomes an important factor when considering the global performance of the different echelons of a specific supply chain. This way, where the application of the Vendor Managed Inventory (VMI) system allows to manage the distribution process to/from a central depot, the elements of the network becomes a part of a supply chain that aims to improve its overall performance, not only one of its elements.

Method: A stochastic optimization model is proposed to involve a network of customers where product is delivered from a central depot and customers can share the product to a central depot in order to be re-distributed and to minimize the shortage of other customers. A first mathematical model is proposed to consider the elements involved in the distribution process and a reformulation is performed to consider shortages and the linearization of some stochastic elements.

Results: Results shows that implementing or adapting the strategy of sharing resources allows the whole network to improve its performance by minimizing the total shortages of the network.

Conclusions: The importance of implementing strategies like a central management with shared resources within the network allows companies to reduce the complexity of making some decisions while achieving their goals and improving their performance.

Resumen (es_ES)

Contexto: La cooperación en la administración de las cadenas de suministro se convierte en un factor importante al considerar el desempeño global de diferentes actores o elementos de una cadena de suministro específica. En este sentido al aplicar estrategias logísticas como el VMI (Vendor Managed Inventory) permite a un sistema administrar los procesos de distribución desde un punto o depósito central y los componentes de la cadena se convierten en parte de la misma permitiendo incrementar el desempeño global y no cada uno individualmente.

Método: Un modelo estocástico es propuesto donde se considera un conjunto de clientes y el envío de producto a esta red se realiza desde un depósito central y los clientes o eslabones de la red pueden compartir parte de su producto con este depósito central para ser redistribuido con el objetivo de minimizar los faltantes de otros clientes.  Un modelo matemático es propuesto considerando los elementos involucrados en los procesos de distribución, después una reformulación es desarrollada para considerar faltantes y la linealización de algunos de sus elementos estocásticos.

Resultados: Los resultados muestran que implementando o adaptando estrategias logísticas como la administración desde un punto central y compartir los recursos a través de la cadena de suministro, permite a las compañías reducir la complejidad de algunas decisiones y alcanzar una mejora en el desempeño.

Conclusiones: La importancia de la implementación de estrategias logísticas tales como la administración centralizada y el uso de recursos compartidos a través de una red de suministro permite a las compañías reducir la complejidad de algunas decisiones y a su vez alcanzar un mejoramiento en el desempeño global.

Descargas

La descarga de datos todavía no está disponible.

Referencias

D. P. van Donk and T. van der Vaart, "A case of shared resources,uncertainty and supply chain integration in the process industry," Int. J. Prod. Econ., vol. 96, pp. 97-108, 2005. https://doi.org/10.1016/j.ijpe.2004.03.002

A. Mateen and A. K. Chatterjee, "Vendor managed inventory for single-vendor multi-retailer supply chains," Decis. Support Syst., vol. 70, pp. 31-41, 2015. https://doi.org/10.1016/j.dss.2014.12.002

A. M. Attiaa, A. M. Ghaithanb, and S. O. Duffuaa, "A multi-objective optimization model for tactical planning of upstream oil & gas supply chains," Comput. Chem. Eng., vol. 128, pp. 216-227, 2019. https://doi.org/10.1016/j.compchemeng.2019.06.016

E. Huanga et al., "Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S.," Renew. Sustain. Energy Rev., vol. 115, no. 109403, 2019. https://doi.org/10.1016/j.rser.2019.109403

M. R. A.-N. Javad Zarei, "An integrated optimization model for natural gas supply chain," Energy, vol. 185, pp. 1114-1130, 2019. https://doi.org/10.1016/j.energy.2019.07.117

C. Cheng, P. Yang, Q. Mingyao, and L. Rousseau, "Modeling a green inventory routing problem with a heterogeneous fleet," Transp. Res. Part E, vol. 97, pp. 97-112, 2017. https://doi.org/10.1016/j.tre.2016.11.001

S. H. Chung and C. Kwon, "Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals," Int. J. Prod. Econ., vol. 179, pp. 117-129, 2016. https://doi.org/10.1016/j.ijpe.2016.05.021

M. Gebicki, E. Mooney, S.-J. Chen, and L. M. Mazur, "Evaluation of hospital medication inventory policies," Health Care Manag. Sci., vol. 17, no. 3, pp. 215-229, 2014. https://doi.org/10.1007/s10729-013-9251-1

L. C. Coelho, J.-F. Cordeau, and G. Laporte, "Consistency in multi-vehicle inventory-routing," Transp. Res. Part C Emerg. Technol., vol. 24, pp. 270-287, Oct. 2012. https://doi.org/10.1016/j.trc.2012.03.007

F. Morales, C. Franco, and G. Mendez-Giraldo, "Dynamic inventory routing problem: Policies considering network disruptions," Int. J. Ind. Eng. Comput., vol. 9, no. 4, 2018. https://doi.org/10.5267/j.ijiec.2017.11.001

A. Baboli, J. Fondrevelle, R. Tavakkoli-Moghaddam, and A. Mehrabi, "A replenishment policy based on joint optimization in a downstream pharmaceutical supply chain: centralized vs. decentralized replenishment," Int. J. Adv. Manuf. Technol., vol. 57, pp. 367-378, 2011. https://doi.org/10.1007/s00170-011-3290-x

F. Rayat, M. Musavi, and A. Bozorgi-Amiri, "Bi-objective reliable location-inventory-routing problem with partial backordering under disruption risks: A modified AMOSA approach," Appl. Soft Comput., vol. 59, pp. 622-643, 2017. https://doi.org/10.1016/j.asoc.2017.06.036

C. Franco, E. R. López-Santana, and J. C. Figueroa-García, "Solving the interval green inventory routing problem using optimization and genetic algorithms," in Communications in Computer and Information Science, vol. 742, 2017, pp. 556-564. https://doi.org/10.1007/978-3-319-66963-2_49

F. Morales, C. Franco, and G. A. Mendez-Giraldo, "Success probability applied to inventory routing problem with time windows," in Communications in Computer and Information Science, vol. 742, 2017, pp. 522-531. https://doi.org/10.1007/978-3-319-66963-2_46

A. C. S. Amaroa and A. P. F. D. Barbosa-Povoa, "Planning and scheduling of industrial supply chains with reverse flows: A real pharmaceutical case study," Comput. Chem. Eng., vol. 32, pp. 2606-2625, 2008. https://doi.org/10.1016/j.compchemeng.2008.03.006

E. L. Santana, G. A. M. Giraldo, and C. Franco, "Diseño de cadenas de distribución con demanda bajo incertidumbre: una aproximación de programación lineal difusa," Ing., vol. 18, pp. 68-84, 2013. https://doi.org/10.14483/udistrital.jour.reving.2013.2.a05

J. K. A, Byung Do Chung, Y. K. B, and B. Jeong, "Robust optimization model for closed-loop supply chain planning under reverse logistics flow and demand uncertainty," J. Clean. Prod., vol. 196, pp. 1314-1328, 2018. https://doi.org/10.1016/j.jclepro.2018.06.157

Carlos L. Quintero‐Araujo Aljoscha Gruler Angel A. Juan Javier Faulin, "Using horizontal cooperation concepts in integrated routing and facility‐location decisions," Int. Trans. Oper. Res., vol. 00, pp. 1-27, 2017.

A. Juan, J. Faulin, E. Perez-Bernabeu, and N. Josewoiez, "Horizontal Cooperation in Vehicle Routing Problems with Backhauling and Environmental Criteria," Procedia - Soc. Behav. Sci., vol. 111, pp. 1133-1141, 2014. https://doi.org/10.1016/j.sbspro.2014.01.148

C. Caballini, S. Sacone, and M. Saeednia, "Cooperation among truck carriers in seaport containerized transportation," Transp. Res. Part E Logist. Transp. Rev., vol. 93, pp. 38-56, 2016. https://doi.org/10.1016/j.tre.2016.05.007

R. Uthayakumar and S. Priyan, "Pharmaceutical supply chain and inventory management strategies: Optimization for a pharmaceutical company and a hospital," Oper. Res. Heal. Care, vol. 2, no. 3, pp. 52-64, 2013. https://doi.org/10.1016/j.orhc.2013.08.001

W. Wakeland, S. Cholette, and K. Venkat, "Food transportation issues and reducing carbon footprint," in Green Technologies in Food Production and Processing, J. I. Boye and Y. Arcand, Eds. Boston, MA: Springer US, 2012, pp. 211-236. https://doi.org/10.1007/978-1-4614-1587-9_9

A. Cozzolino, S. Rossi, and A. Conforti, "Agile and lean principles in the humanitarian supply chain: The case of the United Nations World Food Programme," J. Humanit. Logist. Supply Chain Manag., vol. 2, no. 1, pp. 16-33, 2012. https://doi.org/10.1108/20426741211225984

C. Franco, E. R. López-Santana, and J. C. Figueroa-García, "A Mathematical Model Under Uncertainty for Optimizing Medicine Logistics in Hospitals," in Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, 2018. https://doi.org/10.1007/978-3-030-00353-1_5

C. Franco, V. Augusto, T. Garaix, E. Alfonso-Lizarazo, M. Bourdelin, and H. Bontemps, "Strategic territorial deployment of hospital pharmacy robots using a stochastic p-robust optimization approach," in 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 2018, pp. 390-395. https://doi.org/10.1109/COASE.2018.8560374

C. Franco and J. C. Figueroa-García, "A column generation-based algorithm for solving combined inventory and routing problems," Ingeniare, vol. 24, no. 2, pp. 305-313, 2016. https://doi.org/10.4067/S0718-33052016000200012

Cómo citar
Franco, C., Guzmán Cortés , D., & Figueroa García, J. C. (2020). Modelo matemático para cadenas logísticas centralizadas con decisiones de recursos compartidos. Ingeniería, 25(3). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/reving/article/view/16921
Publicado: 2020-10-02
Sección
Sección Especial: Mejores artículos extendidos - WEA 2020

Artículos más leídos del mismo autor/a