Electronic Device for Satellite Backup of Automatic Vehicle Location Equipment, Using the Iridium Network

Dispositivo Electrónico para Respaldo Satelital de Equipos de Localización Vehicular Automática, Utilizando la Red Iridium

  • Hernán Paz Penagos Escuela Colombiana de Ingenieria Julio Garavito
  • Néstor Rodrigo Guerrero Rodríguez Universidad Del Bosque
Palabras clave: AVL equipment, satellite backrest, Iridium network (en_US)
Palabras clave: Equipos AVL, canal de respaldo satelital, red Iridium (es_ES)

Resumen (en_US)

Abstract

Context:  This paper presents the design and development of an electronic device that operates as a satellite backup channel for automatic vehicle location (AVL) equipment, whose only communication channel is the cell network.

Method: The design, manufacture and assembly of the hardware followed 4 phases and it was aligned with the IPC 2221 standard; this allowed improving the design experience and guarantees the correct electrical operation in the final product.

Results: The information sent by the developed device corresponds to the data generated by the AVL device; this indicates that the information processing was designed correctly. In addition, it was possible to obtain a functional and versatile device, in which the blocks were correctly integrated; its firmware was designed to receive future updates that improved and expanded its capacity and compatibility with other devices.

Conclusions: The final product, which works with the Iridium network, seeks to satisfy technological requirements of the freight transport sector in Colombia, with a low-cost solution, versatile and plug-and-play. The implementation of this type of technologies expands the capacity of tracking mobile assets, still in places where there is no cell network coverage.

Keywords: AVL equipment, satellite backrest, Iridium network

Acknowledgements: The authors thank the Colombian School of Engineering Julio Garavito for financing the study.

Resumen (es_ES)

Resumen

Contexto: Este articulo presenta el diseño y desarrollo de un dispositivo electrónico, que funciona como canal de respaldo satelital para equipos de localización vehicular automática (AVL), cuyo único canal de comunicación es la red celular. 

Método: El diseño, fabricación y ensamblaje del hardware siguió 4 fases y estuvo alineado con el estándar IPC 2221; lo anterior, permitió mejorar la experiencia del diseño y garantiza el correcto funcionamiento eléctrico en el producto final.

Resultados: La información enviada por el dispositivo desarrollado corresponde a los datos generados por el dispositivo AVL; esto indica que el procesamiento de la información fue diseñado correctamente. Además, se logró obtener un dispositivo funcional y versátil, en el cual se integraron correctamente los bloques; su firmware fue diseñado para recibir futuras actualizaciones que mejoraran y ampliaran su capacidad y compatibilidad con otros dispositivos.

Conclusiones: El producto final, que opera con la red Iridium, busca satisfacer necesidades tecnológicas del sector de transporte de carga en Colombia, como una solución versátil y de fácil integración. Con el uso de este tipo de tecnologías se amplía la capacidad de rastrear activos móviles, aun en zonas donde no exista cobertura de redes celulares.

Palabras clave: equipos AVL, canal de respaldo satelital, red Iridium.

Agradecimientos: Los autores agradecen a la Escuela Colombiana de Ingeniería Julio Garavito por el financiamiento del estudio.

Descargas

La descarga de datos todavía no está disponible.

Referencias

A. J. Cavallo, «Energy storage technologies for utility scale intermittent renewable energy systems», J. Sol. Energy Eng. Trans. ASME, 2001. https://doi.org/10.1115/1.1409556

J. A. Guacaneme, D. Velasco, y C. L. Trujillo, «Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes», Informacion Tecnologica. 2014. https://doi.org/10.4067/S0718-07642014000200020

D. W. Gao, Energy Storage for Sustainable Microgrid. 2015.

P. Denholm, E. Ela, B. Kirby, y M. Milligan, «The Role of Energy Storage with Renewable Electricity Generation», Contract, vol. NREL/, n.o January, pp. 1-53, 2010. https://doi.org/10.2172/972169

H. M. Gao y C. Wang, «A detailed pumped storage station model for power system analysis», en 2006 IEEE Power Engineering Society General Meeting, PES, 2006. https://doi.org/10.1109/PES.2006.1709259

A. Daneshi, N. Sadrmomtazi, H. Daneshi, y M. Khederzadeh, «Wind power integrated with compressed air energy storage», en PECon2010 - 2010 IEEE International Conference on Power and Energy, 2010. https://doi.org/10.1109/PECON.2010.5697658

E. K. Hussain, D. Benchebra, K. Atallah, H. S. Ooi, M. Burke, y A. Goodwin, «A flywheel energy storage system for an isolated micro-grid», en IET Conference Publications, 2014. https://doi.org/10.1049/cp.2014.0852

B. R. Alamri y A. R. Alamri, «Technical review of energy storage technologies when integrated with intermittent renewable energy», en 1st International Conference on Sustainable Power Generation and Supply, SUPERGEN '09, 2009. https://doi.org/10.1109/SUPERGEN.2009.5348055

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, y Y. Ding, «Progress in electrical energy storage system: A critical review», Progress in Natural Science. 2009. https://doi.org/10.1016/j.pnsc.2008.07.014

C. Julien, A. Mauger, A. Vijh, y K. Zaghib, Lithium Batteries: Science and Technology. 2015. https://doi.org/10.1007/978-3-319-19108-9

K. Popper y A. Hove, «Energy storage world markets report», 2017.

International Renewable Energy Agency, «Battery Storage for Renewables : Market Status and Technology Outlook», 2015.

R. Passey, T. Spooner, I. MacGill, M. Watt, y K. Syngellakis, «The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors», Energy Policy, vol. 39, n.o 10, pp. 6280-6290, 2011. https://doi.org/10.1016/j.enpol.2011.07.027

M. G. Ruíz, «Pasado, presente y futuro de vehiculos electricos», Univ. Tecnológica Pereira. Programa Ing. Eléctrica, 2015.

M. Kazmierkowski, «Handbook of Automotive Power Electronics and Motor Drives (Emadi, A.; 2006) [Book News]», IEEE Ind. Electron. Mag., 2008. https://doi.org/10.1109/MIE.2008.926483

IEC, «Executive summary.», Electr. Energy Storage White Pap., vol. 39, pp. 11-12, 2009. https://doi.org/10.1016/j.icrp.2009.12.007

D. Linden y T. B. Reddy, Handbook of Batteries, third edition. 2002.

X. Luo, J. Wang, M. Dooner, y J. Clarke, «Overview of current development in electrical energy storage technologies and the application potential in power system operation», Appl. Energy, 2015. https://doi.org/10.1016/j.apenergy.2014.09.081

J. Cho, S. Jeong, y Y. Kim, «Commercial and research battery technologies for electrical energy storage applications», Progress in Energy and Combustion Science. 2015. https://doi.org/10.1016/j.pecs.2015.01.002

B. Nykvist y M. Nilsson, «Rapidly falling costs of battery packs for electric vehicles», Nat. Clim. Chang., vol. 5, p. 329, mar. 2015. https://doi.org/10.1038/nclimate2564

S. Dhundhara, Y. P. Verma, y A. Williams, «Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems», Energy Convers. Manag., vol. 177, pp. 122-142, 2018. https://doi.org/10.1016/j.enconman.2018.09.030

W. M. Amutha y V. Rajini, «Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER», Renew. Sustain. Energy Rev., vol. 62, pp. 236-246, 2016. https://doi.org/10.1016/j.rser.2016.04.042

S. Singh, M. Singh, y S. C. Kaushik, «Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system», Energy Convers. Manag., vol. 128, pp. 178-190, 2016. https://doi.org/10.1016/j.enconman.2016.09.046

M. Usman, M. T. Khan, A. S. Rana, y S. Ali, «Techno-economic analysis of hybrid solar-diesel-grid connected power generation system», J. Electr. Syst. Inf. Technol., vol. 5, n.o 3, pp. 653-662, 2018. https://doi.org/10.1016/j.jesit.2017.06.002

A. Chauhan y R. P. Saini, «Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India», Renew. Sustain. Energy Rev., vol. 59, pp. 388-405, 2016. https://doi.org/10.1016/j.rser.2015.12.290

A. H. Mamaghani, S. A. A. Escandon, B. Najafi, A. Shirazi, y F. Rinaldi, «Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia», Renew. Energy, vol. 97, pp. 293-305, 2016. https://doi.org/10.1016/j.renene.2016.05.086

L. M. Halabi, S. Mekhilef, L. Olatomiwa, y J. Hazelton, «Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia», Energy Convers. Manag., vol. 144, pp. 322-339, 2017. https://doi.org/10.1016/j.enconman.2017.04.070

R. Rajbongshi, D. Borgohain, y S. Mahapatra, «Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER», Energy, vol. 126, pp. 461-474, 2017. https://doi.org/10.1016/j.energy.2017.03.056

P. Peerapong y B. Limmeechokchai, «Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in Thailand», Energy Reports, vol. 3, pp. 1-13, 2017. https://doi.org/10.1016/j.egyr.2016.11.001

Y. Sawle, S. C. Gupta, y A. K. Bohre, «Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system», Renew. Sustain. Energy Rev., vol. 81, pp. 2217-2235, 2018. https://doi.org/10.1016/j.rser.2017.06.033

B. Dursun, C. Gokcol, I. Umut, E. Ucar, y S. Kocabey, «Techno-Economic Evaluation of a Hybrid PV-Wind Power Generation System», Int. J. Green Energy - INT J GREEN ENERGY, vol. 10, 2012. https://doi.org/10.1080/15435075.2011.641192

A. Hiendro, R. Kurnianto, M. Rajagukguk, Y. M. Simanjuntak, y Junaidi, «Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia», Energy, vol. 59, pp. 652-657, 2013. https://doi.org/10.1016/j.energy.2013.06.005

R. Kumar, R. A. Gupta, y A. K. Bansal, «Economic analysis and power management of a stand-alone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm», Swarm Evol. Comput., vol. 8, pp. 33-43, 2013. https://doi.org/10.1016/j.swevo.2012.08.002

B. K. Das, N. Hoque, S. Mandal, T. K. Pal, y M. A. Raihan, «A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh», Energy, vol. 134, pp. 775-788, 2017. https://doi.org/10.1016/j.energy.2017.06.024

M. K. Shahzad, A. Zahid, T. ur Rashid, M. A. Rehan, M. Ali, y M. Ahmad, «Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software», Renew. Energy, vol. 106, pp. 264-273, 2017. https://doi.org/10.1016/j.renene.2017.01.033

V. Tomar y G. N. Tiwari, «Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi - A sustainable approach», Renew. Sustain. Energy Rev., vol. 70, pp. 822-835, 2017. https://doi.org/10.1016/j.rser.2016.11.263

C. Phurailatpam, B. S. Rajpurohit, y L. Wang, «Planning and optimization of autonomous DC microgrids for rural and urban applications in India», Renew. Sustain. Energy Rev., vol. 82, pp. 194-204, 2018. https://doi.org/10.1016/j.rser.2017.09.022

S. Salehin, M. T. Ferdaous, R. M. Chowdhury, S. S. Shithi, M. S. R. B. Rofi, y M. A. Mohammed, «Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis», Energy, vol. 112, pp. 729-741, 2016. https://doi.org/10.1016/j.energy.2016.06.110

R. Sen y S. C. Bhattacharyya, «Off-grid electricity generation with renewable energy technologies in India: An application of HOMER», Renew. Energy, vol. 62, pp. 388-398, 2014. https://doi.org/10.1016/j.renene.2013.07.028

R. K. Chauhan y K. Chauhan, «Management of renewable energy source and battery bank for power losses optimization», en Smart Power Distribution Systems, Q. Yang, T. Yang, y W. Li, Eds. Elsevier, 2019, pp. 299-320. https://doi.org/10.1016/B978-0-12-812154-2.00015-8

K. Chauhan y R. K. Chauhan, «Optimization of grid energy using demand and source side management for DC microgrid», J. Renew. Sustain. Energy, vol. 9, n.o 3, p. 35101, 2017. https://doi.org/10.1063/1.4984619

J. Liu et al., «Iron fumarate as large-capacity and long-life anode material for Li-ion battery boosted by conductive Fe2P decorating», J. Alloys Compd., vol. 809, p. 151826, 2019. https://doi.org/10.1016/j.jallcom.2019.151826

X. Chen y M. Najafi, «Adsorbed Iron oxide (FeO), Lead oxide (PbO), Tellurium dioxide (TeO2) and Niobium dioxide (NbO2) to silicon nanotube (9, 0) as anode electrodes in Li- and Na-ion batteries», Solid State Ionics, vol. 341, p. 115043, 2019. https://doi.org/10.1016/j.ssi.2019.115043

R. K. Chauhan, K. Chauhan, B. R. Subrahmanyam, A. G. Singh, y M. M. Garg, «Distributed and centralized autonomous DC microgrid for residential buildings: A case study», J. Build. Eng., vol. 27, p. 100978, 2020. https://doi.org/10.1016/j.jobe.2019.100978

S. Wang, L. Lu, X. Han, M. Ouyang, y X. Feng, «Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station», Appl. Energy, vol. 259, p. 114146, 2020. https://doi.org/10.1016/j.apenergy.2019.114146

R. K. Chauhan y K. Chauhan, «Battery Monitoring and Control System for Photovoltaic based DC Microgrid», Int. J. Emerg. Electr. POWER Syst., vol. 20, n.o 6, 2019. https://doi.org/10.1515/ijeeps-2019-0133

Ribič, Pihler, Maruša, Kokalj, y Kitak, «Lead-Acid Battery Sizing for a DC Auxiliary System in a Substation by the Optimization Method», Energies, vol. 12, n.o 22, p. 4400, 2019. https://doi.org/10.3390/en12224400

E. Galvan, P. Mandal, y Y. Sang, «Networked microgrids with roof-top solar PV and battery energy storage to improve distribution grids resilience to natural disasters», Int. J. Electr. Power Energy Syst., vol. 123, p. 106239, 2020. https://doi.org/10.1016/j.ijepes.2020.106239

Q. Sun, D. Xing, H. Alafnan, X. Pei, M. Zhang, y W. Yuan, «Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications», Appl. Energy, vol. 253, p. 113529, 2019. https://doi.org/10.1016/j.apenergy.2019.113529

Y. Tian, X. Li, Y. Zhu, y R. Xia, «Optimal capacity allocation of multiple energy storage considering microgrid cost Optimal capacity allocation of multiple energy storage considering microgrid cost», vol. 1074, p. 012126, 2018. https://doi.org/10.1088/1742-6596/1074/1/012126

S. A. Pourmousavi, R. K. Sharma, y B. Asghari, «A framework for real-time power management of a grid-tied microgrid to extend battery lifetime and reduce cost of energy», 2012 IEEE PES Innov. Smart Grid Technol., pp. 1-8, 2012. https://doi.org/10.1109/ISGT.2012.6175707

M. Jarnut, S. Wermiński, y B. Waśkowicz, «Comparative analysis of selected energy storage technologies for prosumer-owned microgrids», Renew. Sustain. Energy Rev., vol. 74, pp. 925-937, 2017. https://doi.org/10.1016/j.rser.2017.02.084

I. Pawel, «The Cost of Storage - How to Calculate the Levelized Cost of Stored Energy (LCOE) and Applications to Renewable Energy Generation», Energy Procedia, vol. 46, pp. 68-77, 2014. https://doi.org/10.1016/j.egypro.2014.01.159

M. Obi, S. M. Jensen, J. B. Ferris, y R. B. Bass, «Calculation of levelized costs of electricity for various electrical energy storage systems», Renew. Sustain. Energy Rev., vol. 67, pp. 908-920, 2017. https://doi.org/10.1016/j.rser.2016.09.043

H. Hosseinnia, J. Modarresi, y D. Nazarpour, «Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program», Energy, vol. 191, p. 116553, 2020. https://doi.org/10.1016/j.energy.2019.116553

J. Asfar, A. Atieh, y R. Al-Mbaideen, «Techno-economic analysis of a microgrid hybrid renewable energy system in Jordan», J. Eur. des Systèmes Autom., vol. 52, n.o 4, pp. 415-423, 2019. https://doi.org/10.18280/jesa.520412

S. A. Sadat, J. Faraji, M. Babaei, y A. Ketabi, «Techno-economic comparative study of hybrid microgrids in eight climate zones of Iran», Energy Sci. Eng., vol. n/a, n.o n/a.

A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. F. Mohammed, y M. A. M. Ramli, «Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq», Energy, vol. 191, p. 116591, 2020. https://doi.org/10.1016/j.energy.2019.116591

E. A. Al-Ammar et al., «Residential Community Load Management Based on Optimal Design of Standalone HRES With Model Predictive Control», IEEE Access, vol. 8, pp. 12542-12572, 2020. https://doi.org/10.1109/ACCESS.2020.2965250

F. Dawood, G. M. Shafiullah, y M. Anda, «Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen», Sustainability, vol. 12, n.o 5, 2020. https://doi.org/10.3390/su12052047

M. R. Quitoras, P. E. Campana, y C. Crawford, «Exploring electricity generation alternatives for Canadian Arctic communities using a multi-objective genetic algorithm approach», Energy Convers. Manag., vol. 210, p. 112471, 2020. https://doi.org/10.1016/j.enconman.2020.112471

T. S. Mahmoud, B. S. Ahmed, y M. Y. Hassan, «The role of intelligent generation control algorithms in optimizing battery energy storage systems size in microgrids: A case study from Western Australia», Energy Convers. Manag., vol. 196, pp. 1335-1352, 2019. https://doi.org/10.1016/j.enconman.2019.06.045

G. Carpinelli, F. Mottola, y D. Proto, «Probabilistic sizing of battery energy storage when time-of-use pricing is applied», Electr. Power Syst. Res., vol. 141, pp. 73-83, 2016. https://doi.org/10.1016/j.epsr.2016.07.013

S. Bahramirad, W. Reder, y A. Khodaei, «Reliability-Constrained Optimal Sizing of Energy Storage System in a Microgrid», IEEE Trans. Smart Grid, vol. 3, n.o 4, pp. 2056-2062, 2012. https://doi.org/10.1109/TSG.2012.2217991

H. Bludszuweit y J. A. Dominguez-Navarro, «A Probabilistic Method for Energy Storage Sizing Based on Wind Power Forecast Uncertainty», IEEE Trans. Power Syst., vol. 26, n.o 3, pp. 1651-1658, 2011. https://doi.org/10.1109/TPWRS.2010.2089541

D. M. Greenwood, N. S. Wade, P. C. Taylor, P. Papadopoulos, y N. Heyward, «A Probabilistic Method Combining Electrical Energy Storage and Real-Time Thermal Ratings to Defer Network Reinforcement», IEEE Trans. Sustain. Energy, vol. 8, n.o 1, pp. 374-384, 2017. https://doi.org/10.1109/TSTE.2016.2600320

S. X. Chen, H. B. Gooi, y M. Q. Wang, «Sizing of Energy Storage for Microgrids», IEEE Trans. Smart Grid, vol. 3, n.o 1, pp. 142-151, 2012. https://doi.org/10.1109/TSG.2011.2160745

T. A. Nguyen, M. L. Crow, y A. C. Elmore, «Optimal Sizing of a Vanadium Redox Battery System for Microgrid Systems», IEEE Trans. Sustain. Energy, vol. 6, n.o 3, pp. 729-737, 2015. https://doi.org/10.1109/TSTE.2015.2404780

S. Sukumar, H. Mokhlis, S. Mekhilef, K. Naidu, y M. Karimi, «Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid», Energy, vol. 118, pp. 1322-1333, 2017. https://doi.org/10.1016/j.energy.2016.11.018

J. P. Fossati, A. Galarza, A. Martín-Villate, y L. Fontán, «A method for optimal sizing energy storage systems for microgrids», Renew. Energy, vol. 77, pp. 539-549, 2015. https://doi.org/10.1016/j.renene.2014.12.039

L. Guo, W. Liu, B. Jiao, B. Hong, y C. Wang, «Multi-objective stochastic optimal planning method for stand-alone microgrid system», IET Gener. Transm. Distrib., vol. 8, n.o 7, pp. 1263-1273(10), 2014. https://doi.org/10.1049/iet-gtd.2013.0541

M. Sufyan, N. A. Rahim, M. M. Aman, C. K. Tan, y S. R. S. Raihan, «Sizing and applications of battery energy storage technologies in smart grid system: A review», J. Renew. Sustain. Energy, vol. 11, n.o 1, p. 14105, ene. 2019. https://doi.org/10.1063/1.5063866

Cómo citar
Paz Penagos, H., & Guerrero Rodríguez, N. R. (2020). Dispositivo Electrónico para Respaldo Satelital de Equipos de Localización Vehicular Automática, Utilizando la Red Iridium. Ingeniería, 25(3). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/reving/article/view/17076
Publicado: 2020-10-14
Sección
Sección Especial: Mejores artículos extendidos - WEA 2020