DOI:

https://doi.org/10.14483/23448393.19777

Publicado:

2024-01-13

Número:

Vol. 29 Núm. 1 (2024): Enero-Abril

Sección:

Ingeniería Eléctrica, Electrónica y Telecomunicaciones

Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition

Sistemas de gestión de energía para microrredes: evolución y desafíos en el marco de la transición energética

Autores/as

Palabras clave:

Microgrid, management system, input and output variables (en).

Palabras clave:

microrred, sistema de gestión, variables de entrada y salida (es).

Resumen (en)

Context: Microgrids have been gaining space and credibility in terms of research and real applications. Technological maturity and new regulations have allowed these types of systems to position themselves as a real alternative to increase the coverage of the energy service and improve its quality. One of the biggest challenges of microgrids is the management of resources and their synchronization with conventional grids. In order to overcome the inconvenience of synchronizing and managing the components of a microgrid, research on management systems has been conducted, which usually consist of a set of modules and control strategies that manage the available resources. However, these studies have not reached unanimity on the best method to perform these tasks, which is why it is necessary to perform a systematic collection of information and clearly define the state of research in energy systems management for this type of network.

Method: Based on the above, a systematic mapping was carried out in this article, wherein a significant number of papers that have contributed to this area were compiled. Taxonomies were generated based on the nature of the variables collected. These variables correspond to the data or information that enters and/or leaves the microgrid management system, such as meteorological variables, power, priority loads, intelligent loads, economic, operating states, and binary outputs.

Conclusions: It was observed that, despite the advances in studying different techniques and strategies microgird control and management, other factors that may affect performance have not been covered in a relevant way, such as the nature of variables and microgrid topology, among others.     

Resumen (es)

Contexto: Las microrredes eléctricas han venido ganando espacio y credibilidad a nivel de investigación y aplicaciones reales. La madurez tecnológica y las nuevas regulaciones han permitido que este tipo de sistemas se posicionen como una alternativa real para aumentar la cobertura del servicio de energía y mejorar su calidad. Uno de los mayores retos de las microrredes es la gestión de los recursos y su sincronización con la red convencional. Con el fin de superar el inconveniente de sincronizar y gestionar los componentes de la microrred, se ha investigado sobre sistemas de gestión, los cuales normalmente consisten en un conjunto de módulos y estrategias de control que administran los recursos disponibles. Sin embargo, estas investigaciones no han llegado a una unanimidad sobre el mejor método para realizar estas tareas, por lo cual se hace necesario realizar una recopilación sistemática de información y definir claramente el estado de la investigación en gestión de sistemas de energía para este tipo de redes.

Método: Con base en lo anterior, en este artículo se realizó un mapeo sistemático, donde se recopiló un importante número de artículos que han aportado a este campo. Se generaron taxonomías basadas en la naturaleza de las variables que se recopilaron. Dichas variables corresponden a los datos o información que entran y/o salen del sistema de gestión de la microrred, tales como variables meteorológicas, potencia, cargas prioritarias, cargas inteligentes, económicas, estados de operación y salidas binarias.

Conclusiones: Se observa que, a pesar de los avances en el estudio de las diferentes técnicas y estrategias de control y gestión de microrredes, no se han cubierto de forma relevante otros factores que pueden afectar al rendimiento, como la naturaleza de las variables y la topología de la microrred, entre otros.

Referencias

Z. Shuai et al., “Microgrid stability: Classification and a review,” Renew. Sustain. Energy Rev., vol. 58, pp. 167-179, 2016. https://doi.org/10.1016/j.rser.2015.12.201 DOI: https://doi.org/10.1016/j.rser.2015.12.201

O. O. Approach, K. Rahbar, S. Member, J. Xu, and R. Zhang, “Real-time energy storage management for renewable integration in microgrid: An off-line optimization approach,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 124-134, 2015. https://doi.org/10.1109/TSG.2014.2359004 DOI: https://doi.org/10.1109/TSG.2014.2359004

C. L. Nge, I. U. Ranaweera, O. M. Midtgård, and L. Norum, “A real-time energy management system for smart grid integrated photovoltaic generation with battery storage,” Renew. Energy, vol. 130, pp. 774-785, 2019. https://doi.org/10.1016/j.renene.2018.06.073 DOI: https://doi.org/10.1016/j.renene.2018.06.073

W. El-Baz, P. Tzscheutschler, and U. Wagner, “Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies,” Appl. Energy, vol. 241, pp. 625-639, 2019. https://doi.org/10.1016/j.apenergy.2019.02.049 DOI: https://doi.org/10.1016/j.apenergy.2019.02.049

K. Markov and N. Rajaković, “Multi-energy microgrids with ecotourism purposes: The impact of the power market and the connection line,” Energy Convers. Manag., vol. 196, pp. 1105-1112, 2019. https://doi.org/10.1016/j.enconman.2019.05.048 DOI: https://doi.org/10.1016/j.enconman.2019.05.048

T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973-1991, 2020. https://doi.org/10.1016/j.egyr.2020.07.020 DOI: https://doi.org/10.1016/j.egyr.2020.07.020

L. Miller and R. Carriveau, “Energy demand curve variables – An overview of individual and systemic e ff ects,” Sustain. Energy Technol. Assessments, vol. 35, pp. 172-179, 2019. https://doi.org/10.1016/j.seta.2019.07.006 DOI: https://doi.org/10.1016/j.seta.2019.07.006

R. S. Jayashree and P. J. A. Kenis, “Micro fuel cells for portable applications,” AIChE Annu. Meet. Conf. Proc., no. 42, art. 3390, 2005.

E. Bullich-massagué, F. Díaz-gonzález, M. Aragüés-peñalba, F. Girbau-llistuella, P. Olivella-rosell, and A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340-361, 2018. https://doi.org/10.1016/j.apenergy.2017.12.048 DOI: https://doi.org/10.1016/j.apenergy.2017.12.048

J. Shen, C. Jiang, Y. Liu, and X. Wang, “A microgrid energy management system and risk management under an electricity market environment,” IEEE Access, vol. 4, pp. 2349-2356, 2016. https://doi.org/10.1109/ACCESS.2016.2555926 DOI: https://doi.org/10.1109/ACCESS.2016.2555926

D. Giaouris et al., “A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response,” Appl. Energy, vol. 226, pp. 546-559, 2018. https://doi.org/10.1016/j.apenergy.2018.05.113 DOI: https://doi.org/10.1016/j.apenergy.2018.05.113

D. Petreus, R. Etz, T. Patarau, and M. Cirstea, “An islanded microgrid energy management controller validated by using hardware-in-the-loop emulators,” Int. J. Electr. Power Energy Syst., vol. 106,. 346-357, 2019. https://doi.org/10.1016/j.ijepes.2018.10.020 DOI: https://doi.org/10.1016/j.ijepes.2018.10.020

W. Su and J. Wang, “Energy management systems in microgrid operations,” Electr. J., vol. 25, no. 8, pp. 45-60, 2012. https://doi.org/10.1016/j.tej.2012.09.010 DOI: https://doi.org/10.1016/j.tej.2012.09.010

L. A. Dao, A. Dehghani-Pilehvarani, A. Markou, and L. Ferrarini, “A hierarchical distributed predictive control approach for microgrids energy management,” Sustain. Cities Soc., vol. 48, art. 101536, 2019. https://doi.org/10.1016/j.scs.2019.101536 DOI: https://doi.org/10.1016/j.scs.2019.101536

T. Morstyn, B. Hredzak, and V. G. Agelidis, “Control strategies for microgrids with distributed energy storage systems: An overview,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3652-3666, 2018. https://doi.org/10.1109/TSG.2016.2637958 DOI: https://doi.org/10.1109/TSG.2016.2637958

M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and prospects,” Appl. Energy, vol. 222, pp. 1033-1055, 2018. https://doi.org/10.1016/j.apenergy.2018.04.103 DOI: https://doi.org/10.1016/j.apenergy.2018.04.103

T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, 2016. https://doi.org/10.1109/TPEL.2015.2478859 DOI: https://doi.org/10.1109/TPEL.2015.2478859

J. Pascual, J. Barricarte, P. Sanchis, and L. Marroyo, “Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting,” Appl. Energy, vol. 158, pp. 12-25, 2015. https://doi.org/10.1016/j.apenergy.2015.08.040 DOI: https://doi.org/10.1016/j.apenergy.2015.08.040

International Electrotechnical Commission, “IEC 61970-1:2005 | IEC Webstore | automation, cyber security, smart city, smart energy, smart grid,” pp 5-7 2005. https://webstore.iec.ch/publication/6208 (accessed Oct. 16, 2020).

C. C. S. Duan and T. C. B. Liu, “Smart energy management system for optimal microgrid economic operation,” IET Rene. Power Gen., vol. 5, no. 3, pp. 258-267, 2011. https://doi.org/10.1049/iet-rpg.2010.0052 DOI: https://doi.org/10.1049/iet-rpg.2010.0052

A. Ahmad Khan, M. Naeem, M. Iqbal, S. Qaisar, and A. Anpalagan, “A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids,” Renew. Sustain. Energy Rev., vol. 58, pp. 1664-1683, 2016. https://doi.org/10.1016/j.rser.2015.12.259 DOI: https://doi.org/10.1016/j.rser.2015.12.259

M. Hu, J. W. Xiao, S. C. Cui, and Y. W. Wang, “Distributed real-time demand response for energy management scheduling in smart grid,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 233-245, 2018. https://doi.org/10.1016/j.ijepes.2018.01.016 DOI: https://doi.org/10.1016/j.ijepes.2018.01.016

M. Elsied, A. Oukaour, T. Youssef, H. Gualous, and O. Mohammed, “An advanced real time energy management system for microgrids,” Energy, vol. 114, pp. 742-752, 2016. https://doi.org/10.1016/j.energy.2016.08.048 DOI: https://doi.org/10.1016/j.energy.2016.08.048

K. Say, M. John, and R. Dargaville, “Power to the people : Evolutionary market pressures from residential PV battery investments in Australia,” Energy Policy, vol. 134, art. 110977, 2019. https://doi.org/10.1016/j.enpol.2019.110977 DOI: https://doi.org/10.1016/j.enpol.2019.110977

T. R Nudell, M. Brignone, M. Robba, A. Bonfiglio, F. Delfino, and A. Annaswamy, “A dynamic market mechanism for combined heat and power microgrid energy management,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10033-10039, 2017. https://doi.org/10.1016/j.ifacol.2017.08.2040 DOI: https://doi.org/10.1016/j.ifacol.2017.08.2040

S. Chalise, J. Sternhagen, T. M. Hansen, and R. Tonkoski, “Energy management of remote microgrids considering battery lifetime,” Electr. J., vol. 29, no. 6, pp. 1-10, 2016. https://doi.org/10.1016/j.tej.2016.07.003 DOI: https://doi.org/10.1016/j.tej.2016.07.003

J. Shen, C. Jiang, Y. Liu, and J. Qian, “Electric power components and systems a microgrid energy management system with demand response for providing grid peak shaving a microgrid energy management system with demand response for providing grid peak shaving,” Elec. Power Comp. Syst., vol. 44, no. 8, 2016. https://doi.org/10.1080/15325008.2016.1138344 DOI: https://doi.org/10.1080/15325008.2016.1138344

S. Sukumar, H. Mokhlis, S. Mekhilef, and K. Naidu, “Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid,” Energy, vol. 118, pp. 1322-1333, 2017. https://doi.org/10.1016/j.energy.2016.11.018 DOI: https://doi.org/10.1016/j.energy.2016.11.018

G. Comodi et al., “Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies,” Appl. Energy, vol. 137, pp. 854-866, 2015. https://doi.org/10.1016/j.apenergy.2014.07.068 DOI: https://doi.org/10.1016/j.apenergy.2014.07.068

M. H. Amrollahi, S. Mohammad, and T. Bathaee, “Techno-economic optimization of hybrid photovoltaic / wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response,” Appl. Energy, vol. 202, pp. 66-77, 2017. https://doi.org/10.1016/j.apenergy.2017.05.116 DOI: https://doi.org/10.1016/j.apenergy.2017.05.116

M. Střelec and J. Berka, "Microgrid energy management based on approximate dynamic programming," in IEEE PES ISGT Europe 2013, Lyngby, Denmark, 2013, pp. 1-5. https://doi.org/10.1109/ISGTEurope.2013.6695439 DOI: https://doi.org/10.1109/ISGTEurope.2013.6695439

S. Golshannavaz, S. Afsharnia, and P. Siano, “A comprehensive stochastic energy management system in reconfigurable microgrids,” Int. J. Energy, Res., vol. 40, no. 11, pp. 1518-1531, 2016. https://doi.org/10.1002/er.3536 DOI: https://doi.org/10.1002/er.3536

J. Radosavljevi, M. Jevti, and D. Klimenta, “Engineering optimization energy and operation management of a microgrid using particle swarm optimization,” Energy Opt., vol. 48, no. 5, pp. 811-813, 2015. https://doi.org/10.1080/0305215X.2015.1057135 DOI: https://doi.org/10.1080/0305215X.2015.1057135

M. Marzband, E. Yousefnejad, A. Sumper, and J. L. Domínguez-García, "Real time experimental implementation of optimum energy management system in stand-alone Microgrid by using multi-layer ant colony optimization," Int. J. Electr. Power Energy Syst., vol. 75, pp. 265-274, 2016. https://doi.org/10.1016/j.ijepes.2015.09.010 DOI: https://doi.org/10.1016/j.ijepes.2015.09.010

M. Marzband, M. Ghadimi, A. Sumper, and J. L. Domínguez-garcía, “Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode,” Appl. Energy, vol. 128, pp. 164-174, 2014. https://doi.org/10.1016/j.apenergy.2014.04.056 DOI: https://doi.org/10.1016/j.apenergy.2014.04.056

D. Arcos-Aviles, J. Pascual, F. Guinjoan, L. Marroyo, P. Sanchis, and M. P. Marietta, “Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting,” Appl. Energy, vol. 205, pp. 69-84, 2017. https://doi.org/10.1016/j.apenergy.2017.07.123 DOI: https://doi.org/10.1016/j.apenergy.2017.07.123

Y.-K. Chen, Y.-C. Wu, C.-C. Song, and Y.-S. Chen, "Design and implementation of energy management system with fuzzy control for DC microgrid systems," IEEE Trans. Power Elect., vol. 28, no. 4, pp. 1563-1570, April 2013. https://doi.org/10.1109/TPEL.2012.2210446 DOI: https://doi.org/10.1109/TPEL.2012.2210446

T. Bogaraj and J. Kanakaraj, “Intelligent energy management control for independent microgrid,” Sadhana - Acad. Proc. Eng. Sci., vol. 41, no. 7, pp. 755-769, 2016. https://doi.org/10.1007/s12046-016-0515-6 DOI: https://doi.org/10.1007/s12046-016-0515-6

A. Anvari-moghaddam, A. Rahimi-kian, M. S. Mirian, and J. M. Guerrero, “A multi-agent based energy management solution for integrated buildings and microgrid system,” Appl. Energy, vol. 203, pp. 41-56, 2017. https://doi.org/10.1016/j.apenergy.2017.06.007 DOI: https://doi.org/10.1016/j.apenergy.2017.06.007

C. Corchero and M. Cruz-zambrano, “Optimal energy management for a residential microgrid including a vehicle-to-grid system,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2163-2172, 2014. https://doi.org/10.1109/TSG.2014.2318836 DOI: https://doi.org/10.1109/TSG.2014.2318836

A. G. Tsikalakis and N. D. Hatziargyriou, "Centralized control for optimizing microgrids operation," IEEE Trans. Energy Conv., vol. 23, no. 1, pp. 241-248, March 2008. https://doi.org/10.1109/TEC.2007.914686 DOI: https://doi.org/10.1109/TEC.2007.914686

N. Anglani, G. Oriti, and M. Colombini, “Optimized energy management system to reduce fuel consumption in remote military microgrids,” IEEE Trans. Ind. App., vol. 53, no. 6, pp. 5777-5785, 2017. https://doi.org/10.1109/TIA.2017.2734045 DOI: https://doi.org/10.1109/TIA.2017.2734045

B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, and F. L. G. Jiménez-estévez, “Continuous optimal control approaches to microgrid energy management,” Energy Syst., vol. 9, pp. 59-77, 2017. https://doi.org/10.1007/s12667-016-0228-2 DOI: https://doi.org/10.1007/s12667-016-0228-2

J. B. Almada, R. P. S. Leão, R. F. Sampaio, and G. C. Barroso, “A centralized and heuristic approach for energy management of an AC microgrid,” Renew. Sustain. Energy Rev., vol. 60, pp. 1396-1404, 2016. https://doi.org/10.1016/j.rser.2016.03.002 DOI: https://doi.org/10.1016/j.rser.2016.03.002

K. Hassan Youssef, “Optimal management of unbalanced smart microgrids for scheduled and unscheduled multiple transitions between grid-connected and islanded modes,” Electr. Power Syst. Res., vol. 141, pp. 104-113, 2016. https://doi.org/10.1016/j.epsr.2016.07.015 DOI: https://doi.org/10.1016/j.epsr.2016.07.015

A. Choudar, D. Boukhetala, S. Barkat, and J. Brucker, “A local energy management of a hybrid PV -storage based distributed generation for microgrids,” Energy Convers. Manag., vol. 90, pp. 21-33, 2015. https://doi.org/10.1016/j.enconman.2014.10.067 DOI: https://doi.org/10.1016/j.enconman.2014.10.067

P. P. Vergara, J. C. López, L. C. P. Silva, and M. J. Rider, “Security-constrained optimal energy management system for three-phase residential microgrids,” Electr. Power Syst. Res., vol. 146, pp. 371-382, 2017. https://doi.org/10.1016/j.epsr.2017.02.012 DOI: https://doi.org/10.1016/j.epsr.2017.02.012

H. Kanchev, D. Lu, F. Colas, V. Lazarov, B. Francois, and S. Member, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electronics, vol. 58, no. 10, pp. 4583-4592, 2011. DOI: https://doi.org/10.1109/TIE.2011.2119451

M. Sechilariu, B. Wang, and F. Locment, “Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication,” Energy Build., vol. 59, pp. 236-243, 2013. https://doi.org/10.1016/j.enbuild.2012.12.039 DOI: https://doi.org/10.1016/j.enbuild.2012.12.039

A. Askarzadeh, “A memory-based genetic algorithm for optimization of power generation in a microgrid,” IEEE Trans. Sust. Energy, vol. 9, no. 3, pp. 1081-1089, 2017. https://doi.org/10.1109/TSTE.2017.2765483 DOI: https://doi.org/10.1109/TSTE.2017.2765483

N. Tiwari and L. Srivastava, "Generation scheduling and micro-grid energy management using differential evolution algorithm," 2016 Int. Conf. Circuit, Power Comp. Tech. (ICCPCT), Nagercoil, India, 2016, pp. 1-7. https://doi.org/10.1109/ICCPCT.2016.7530218 DOI: https://doi.org/10.1109/ICCPCT.2016.7530218

T. Niknam, F. Golestaneh, and A. Malekpour, “Probabilistic energy and operation management of a microgrid containing wind / photovoltaic / fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm,” Energy, vol. 43, no. 1, pp. 427-437, 2012. https://doi.org/10.1016/j.energy.2012.03.064 DOI: https://doi.org/10.1016/j.energy.2012.03.064

M. Motevasel and T. Niknam, “Multi-objective energy management of CHP (combined heat and power)-based micro-grid,” Energy, vol. 51, pp. 123-136, 2013. https://doi.org/10.1016/j.energy.2012.11.035 DOI: https://doi.org/10.1016/j.energy.2012.11.035

M. Motevasel and A. R. Seifi, “Expert energy management of a micro-grid considering wind energy uncertainty,” Energy Convers. Manag., vol. 83, pp. 58-72, 2014. https://doi.org/10.1016/j.enconman.2014.03.022 DOI: https://doi.org/10.1016/j.enconman.2014.03.022

G. Kyriakarakos, A. I. Dounis, K. G. Arvanitis, and G. Papadakis, “A fuzzy logic energy management system for polygeneration microgrids,” Renew. Energy, vol. 41, pp. 315-327, 2012. https://doi.org/10.1016/j.renene.2011.11.019 DOI: https://doi.org/10.1016/j.renene.2011.11.019

D. Tenfen and E. C. Finardi, “A mixed integer linear programming model for the energy management problem of microgrids,” Electr. Power Syst. Res., vol. 122, pp. 19-28, 2015. https://doi.org/10.1016/j.epsr.2014.12.019 DOI: https://doi.org/10.1016/j.epsr.2014.12.019

M. Abedini, M. H. Moradi, and S. M. Hosseinian, “Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm,” Renew. Energy, vol. 90, pp. 430-439, 2016. https://doi.org/10.1016/j.renene.2016.01.014 DOI: https://doi.org/10.1016/j.renene.2016.01.014

G. K. Venayagamoorthy and R. Sharma, “Dynamic energy management system for a smart microgrid,” IEEE Trans. Neural Networks Learning Syst., vol. 27, no. 8, pp. 1-14, 2016. http://dx.doi.org/10.1109/TNNLS.2016.2514358 DOI: https://doi.org/10.1109/TNNLS.2016.2514358

E. De Santis, A. Rizzi, and A. Sadeghian, “Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids,” Appl. Soft Comput. J., vol. 60, pp. 135-149, 2017. https://doi.org/10.1016/j.asoc.2017.05.059 DOI: https://doi.org/10.1016/j.asoc.2017.05.059

C. S. Karavas, G. Kyriakarakos, K. G. Arvanitis, and G. Papadakis, “A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids,” Energy Convers. Manag., vol. 103, pp. 166-179, 2015. https://doi.org/10.1016/j.enconman.2015.06.021 DOI: https://doi.org/10.1016/j.enconman.2015.06.021

H. S. V. S. K. Nunna, A. M. Saklani, A. Sesetti, S. Battula, S. Doolla, and D. Srinivasan, “Multi-agent based demand response management system for combined operation of smart microgrids,” Sustain. Energy, Grids Networks, vol. 6, pp. 25-34, 2016. https://doi.org/10.1016/j.segan.2016.01.002 DOI: https://doi.org/10.1016/j.segan.2016.01.002

L. Ma, N. Liu, J. Zhang, and W. Tushar, “Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach,” IEEE Tran. Ind. Informatics, vol. 12, no. 5, 2016. https://doi.org/10.1109/TII.2016.2578184 DOI: https://doi.org/10.1109/TII.2016.2578184

G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou, "Leader-follower strategies for energy management of multi-microgrids," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1909-1916, Dec. 2013. https://doi.org/10.1109/TSG.2013.2256941 DOI: https://doi.org/10.1109/TSG.2013.2256941

H. S. V. S. Kumar Nunna and S. Doolla, "Energy management in microgrids using demand response and distributed storage – A multiagent approach," IEEE Trans. Power Delivery, vol. 28, no. 2, pp. 939-947, April 2013. https://doi.org/10.1109/TPWRD.2013.2239665 DOI: https://doi.org/10.1109/TPWRD.2013.2239665

L. Kumar, S. R. K, A. Verma, B. K. Panigrahi, and R. Kumar, “An operation window constrained strategic energy management (OWCSEM ) of micro grid with electric vehicle and distributed resources,” IET Gen. Trans. Dist., vol. 11, no. 3, 615-626. https://doi.org/10.1049/iet-gtd.2016.0654 DOI: https://doi.org/10.1049/iet-gtd.2016.0654

Cómo citar

APA

Vidal-Martinez, C. S., Bueno-López, M., Flórez-Marulanda, J. F., y Restrepo, Álvaro R. (2024). Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ingeniería, 29(1), e19777. https://doi.org/10.14483/23448393.19777

ACM

[1]
Vidal-Martinez, C.S. et al. 2024. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ingeniería. 29, 1 (ene. 2024), e19777. DOI:https://doi.org/10.14483/23448393.19777.

ACS

(1)
Vidal-Martinez, C. S.; Bueno-López, M.; Flórez-Marulanda, J. F.; Restrepo, Álvaro R. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ing. 2024, 29, e19777.

ABNT

VIDAL-MARTINEZ, Carlos Santiago; BUENO-LÓPEZ, Maximiliano; FLÓREZ-MARULANDA, Juan Fernando; RESTREPO, Álvaro Rene. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ingeniería, [S. l.], v. 29, n. 1, p. e19777, 2024. DOI: 10.14483/23448393.19777. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/19777. Acesso em: 17 may. 2024.

Chicago

Vidal-Martinez, Carlos Santiago, Maximiliano Bueno-López, Juan Fernando Flórez-Marulanda, y Álvaro Rene Restrepo. 2024. «Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition». Ingeniería 29 (1):e19777. https://doi.org/10.14483/23448393.19777.

Harvard

Vidal-Martinez, C. S. (2024) «Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition», Ingeniería, 29(1), p. e19777. doi: 10.14483/23448393.19777.

IEEE

[1]
C. S. Vidal-Martinez, M. Bueno-López, J. F. Flórez-Marulanda, y Álvaro R. Restrepo, «Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition», Ing., vol. 29, n.º 1, p. e19777, ene. 2024.

MLA

Vidal-Martinez, Carlos Santiago, et al. «Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition». Ingeniería, vol. 29, n.º 1, enero de 2024, p. e19777, doi:10.14483/23448393.19777.

Turabian

Vidal-Martinez, Carlos Santiago, Maximiliano Bueno-López, Juan Fernando Flórez-Marulanda, y Álvaro Rene Restrepo. «Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition». Ingeniería 29, no. 1 (enero 13, 2024): e19777. Accedido mayo 17, 2024. https://revistas.udistrital.edu.co/index.php/reving/article/view/19777.

Vancouver

1.
Vidal-Martinez CS, Bueno-López M, Flórez-Marulanda JF, Restrepo Álvaro R. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ing. [Internet]. 13 de enero de 2024 [citado 17 de mayo de 2024];29(1):e19777. Disponible en: https://revistas.udistrital.edu.co/index.php/reving/article/view/19777

Descargar cita

Visitas

9

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.

Loading...