DOI:

https://doi.org/10.14483/23448393.19067

Published:

2023-04-29

Issue:

Vol. 28 No. 2 (2023): May-August

Section:

Chemical, Food, and Environmental Engineering

Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre

Evaluation of Protocols for the Synthesis of Copper or Copper Oxides Nanoparticles

Authors

Keywords:

nanoparticles, copper, copper oxides, chemical synthesis, biological synthesis (en).

Keywords:

nanopart´ıculas, cobre, s´ıntesis biol´ogica (es).

Abstract (es)

Contexto: Las nanopartículas de cobre u óxidos de cobre son materiales de interés para la agricultura por sus múltiples propiedades, entre ellas su actividad antimicrobiana, que resulta útil en el control biológico de plagas. Diversos autores han reportado que las nanopartículas con tamaño inferior a 50 nm tienen mayor efecto antimicrobiano. De acuerdo con esto, este estudio tuvo como objetivo comparar diferentes protocolos de síntesis, con el propósito de obtener nanopartículas de cobre u óxidos de cobre de tamaños adecuados para su futura evaluación en el control biológico de especies que comúnmente afectan los cultivos en Colombia.

Método: Se evaluaron cinco protocolos de síntesis, cuatro de ellos clasificados como métodos de síntesis química verde y el otro como síntesis biológica. Las nanopartículas obtenidas fueron caracterizadas mediante espectroscopía UV-Vis, DLS, TEM, FTIR, DRX, SEM y EDS.

Resultados: El protocolo 3, que utiliza sulfato de cobre pentahidratado como sal precursora, ácido ascórbico como agente reductor y almidón como estabilizante, resultó ser el más adecuado, pues con él se obtuvieron nanopartículas esféricas de cobre metálico con un tamaño promedio de 4,5 nm.

Conclusiones: Fue posible comparar las metodologías de obtención de nanopartículas de cobre y óxidos de cobre, analizar el efecto de las condiciones de síntesis en sus características y finalmente obtener un protocolo para sintetizar nanopartículas de cobre con un tamaño adecuado para un potencial uso en aplicaciones de control biológico.

Abstract (en)

Context: Copper or copper oxide nanoparticles are materials of interest in the field of agriculture due to their multiple properties, including their antimicrobial activity, which is useful in the biological control of pests. Several authors have reported that nanoparticles smaller than 50 nm have a greater antimicrobial effect. Accordingly, this study aimed to compare different synthesis protocols, with the purpose of obtaining copper or copper oxide nanoparticles with adequate size for their subsequent evaluation in the biological control of species that commonly affect crops in Colombia.

Method: Five synthesis protocols were evaluated, four of them classified as green chemical synthesis methods, and the other as biological synthesis. The obtained nanoparticles were characterized via UV-Vis spectroscopy, DLS, TEM, FTIR, XRD, SEM, and EDS.

Results: Protocol 3, which uses copper sulfate pentahydrate as precursor salt, ascorbic acid as reducing agent, and starch as stabilizer, proved to be the most suitable, as spherical metallic copper nanoparticles with a size of 4,5 nm were obtained with it.

Conclusions: It was possible to compare methodologies for copper and copper oxide nanoparticles production, analyze the effect of synthesis conditions on their characteristics, and finally obtain a protocol to synthesize copper nanoparticles with an adequate size for potential use in biological control applications.

Author Biographies

Claudia Patricia Ossa-Orozco, University of Antioquia

Claudia Patricia Ossa Orozco, Ingeniera Mecánica de la Universidad Nacional de Colombia Sede Medellín, Colombia formada en 2000, con PhD en Ingeniería Metalúrgica y de Materiales de la Universidad de São Paulo, Brasil graduada en 2005. Actualmente es Profesora Asociada de la Universidad de Antioquia, en el Programa de Bioingeniería e investigadora del Grupo de Investigación en Biomateriales. Sus temas de investigación incluyen la síntesis y caracterización de fosfatos de calcio y nanopartículas metálicas, extracción y aplicación de polímeros naturales y fabricación de materiales porosos (scaffolds).

Ana María Torres-López, University of Antioquia

Ana María Torres L. es Ingeniera Química. Recibió su maestría en Ingeniería de la Universidad de Anitioquia en Medellín (Colombia) y su doctorado en Nanotecnología del Centro de Investigación en Materiales Avanzados en Monterrey, (México). Actualmente se desempeña como Profesora Asociada en el programa de Bioingeniería de la Universidad de Antioquia. Está interesada en biotecnología, nanotecnología y fenómenos de transporte.

References

R. Singla, A. Guliani, A. Kumari y S. K. Yadav, “Metallic Nanoparticles, Toxicity Issues and Applications in Medicine,” en Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration, 1.a ed., Springer, Singapore, 2016, pp. 41-71. https://doi.org/10.1007/978-981-10-0818-4_3 DOI: https://doi.org/10.1007/978-981-10-0818-4_3

R. A. Sperling y W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Trans. R. Soc. A, vol. 368, pp. 1333-1383, 2010. https://doi.org/10.1098/rsta.2009.0273 DOI: https://doi.org/10.1098/rsta.2009.0273

H. Kumar K, N. Venkatesh, H. Bhowmik y A. Kuila, “Metallic nanoparticle: a review,” BJSTR, vol. 4, n.o 2, pp. 3765-3775, 2018. https://doi.org/10.26717/BJSTR.2018.04.0001011 DOI: https://doi.org/10.26717/BJSTR.2018.04.0001011

A. Y. Ghidan y T. M. A. Antary, “Applications of nanotechnology in agriculture,” en Applications of Nanobiotechnology, 2020, pp. 1-14. DOI: https://doi.org/10.5772/intechopen.88390

R. H. Lira Saldívar, B. Méndez Argüello, G. D. los Santos Villarreal et al., “Potencial de la nanotecnología en la agricultura,” Acta univer., vol. 28, n.o 2, pp. 9-24, 2018. https://doi.org/10.15174/au.2018.1575 DOI: https://doi.org/10.15174/au.2018.1575

S. Baker, T. Volova, S. Prudnikova, Svetlana V. Satish y N. Prasad M.N., “Nanoagroparticles emerging trends and future prospect in modern agriculture system,” Environ. Toxicol. Pharmacol., vol. 53, n.o 53, pp. 10-27, 2017. https://doi.org/10.1016/j.etap.2017.04.012 DOI: https://doi.org/10.1016/j.etap.2017.04.012

B. Khodashenas y H. R. Ghorbani, “Synthesis of copper nanoparticles: An overview of the various methods,” Korean J. Chem. Eng., vol. 31, n.o 7, pp. 1105-1109, jul. 2014. https://doi.org/10.1007/s11814-014-0127-y DOI: https://doi.org/10.1007/s11814-014-0127-y

M. C. Crisan, M. Teodora y M. Lucian, “Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications,” Appl. Sci., vol. 12, n.o 1, 2021. https://doi.org/10.3390/app12010141 DOI: https://doi.org/10.3390/app12010141

H. J. Lee, J. Y. Song y B. S. Kim, “Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity,” J. Chem. Technol. Biotechnol., vol. 88, n.o 11, pp. 1971-1977, nov. 2013. https://doi.org/10.1002/jctb.4052 DOI: https://doi.org/10.1002/jctb.4052

D. Ray, S. Pramanik, R. P. Mandal, S. Chaudhuri y S. De, “Sugar-mediated ‘green’ synthesis of copper nanoparticles with high antifungal activity,” Mater. Res. Express, vol. 2, n.o 10, pp. 105 002, oct. de 2015. https://doi.org/10.1088/2053-1591/2/10/105002 DOI: https://doi.org/10.1088/2053-1591/2/10/105002

S. Adewale, A. Similoluwa, F. Adekunle y A. Kolawole, “Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation,” Heliyon, vol. 6, n.o 7, 2020. https://doi.org/10.1016/j.heliyon.2020.e04508 DOI: https://doi.org/10.1016/j.heliyon.2020.e04508

M. A. Asghar y M. A. Asghar, “Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide,” International journal of biological macromolecules, vol. 160, pp. 1168-1176, oct. 2020. https://doi.org/10.1016/j.ijbiomac.2020.05.198 DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.198

S. S. Shankar, A. Rai, A. Ahmad y M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” J. Colloid. Interface Sci., vol. 275, n.o 2, pp. 496-502, jul. 2004. https://doi.org/10.1016/j.jcis.2004.03.003 DOI: https://doi.org/10.1016/j.jcis.2004.03.003

S. Shankar y J. W. Rhim, “Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles,” Mater. Lett., vol. 132, pp. 307-311, oct. 2014. https://doi.org/10.1016/j.matlet.2014.06.014 DOI: https://doi.org/10.1016/j.matlet.2014.06.014

S. Chandra, A. Kumar y P. K. Tomar, “Synthesis and characterization of copper nanoparticles by reducing agent,” J. Saudi Chem. Soc., vol. 18, n.o 2, pp. 149-153, abr. de 2014. https://doi.org/10.1016/j.jscs.2011.06.009 DOI: https://doi.org/10.1016/j.jscs.2011.06.009

G. Madras y B. J. McCoy, “Temperature effects on the transition from nucleation and growth to Ostwald ripening,” Chem. Eng. Sci., vol. 59, n.o 13, pp. 2753-2765, jul. 2004. https://doi.org/10.1016/j.ces.2004.03.022 DOI: https://doi.org/10.1016/j.ces.2004.03.022

Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu y G. Zou, “The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles,” Mater. Lett., vol. 60, n.o 29-30, pp. 3548-3552, dic. 2006. https://doi.org/10.1016/j.matlet.2006.03.055 DOI: https://doi.org/10.1016/j.matlet.2006.03.055

R. A. Soomro, S. T. Hussain Sherazi, Sirajuddin et al., “Synthesis of air stable copper nanoparticles and their use in catalysis,” Adv. Mater. Lett., vol. 5, n.o 4, pp. 191-198, abr. 2014. https://doi.org/10.5185/AMLETT.2013.8541 DOI: https://doi.org/10.5185/amlett.2013.8541

J. J. Lenders, G. Mirabello y N. A. Sommerdijk, “Bioinspired magnetite synthesis via solid precursor phases,” Chemical Science, vol. 7, n.o 9, pp. 5624-5634, 2016. https://doi.org/10.1039/C6SC00523C DOI: https://doi.org/10.1039/C6SC00523C

T. Ameh y C. M. Sayes, “The potential exposure and hazards of copper nanoparticles: A review,” Environ. Toxicol. Pharmacol., vol. 71, n.o junio, pp. 103-220, 2019. https://doi.org/10.1016/j.etap.2019.103220 DOI: https://doi.org/10.1016/j.etap.2019.103220

N. D. Pham, M. M. Duong, M. V. Le, H. A. Hoang y L. K. O. Pham, “Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici,” C. R. Chim, vol. 22, n.o 11-12, pp. 786-793, 2019. https://doi.org/10.1016/j.crci.2019.10.007 DOI: https://doi.org/10.1016/j.crci.2019.10.007

U. Bogdanovi´c, V. Lazi´c, V. Vodnik, M. Budimir, Z. Markovi´c y S. Dimitrijevi´c, “Copper nanoparticles with high antimicrobial activity,” Mater. Lett., vol. 128, pp. 75-78, ago. 2014. https://doi.org/10.1016/j.matlet.2014.04.106 DOI: https://doi.org/10.1016/j.matlet.2014.04.106

N. Pariona, A. I. Mtz-Enriquez, D. Sánchez-Rangle, G. Carrión, F. Paraguay-Delgado y G. Rosas-saito, “Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens,” RSC, vol. 9, pp. 18 835-18 843, 2019. https://doi.org/10.1039/C9RA03110C DOI: https://doi.org/10.1039/C9RA03110C

P. V. Viet, H. T. Nguyen, T. M. Cao y L. V. Hieu, “Fusarium Antifungal Activities of Copper Nanoparticles Synthesized by a Chemical Reduction Method,” J. of Nanomaterials, vol. 2016, 2016. https://doi.org/10.1155/2016/1957612 DOI: https://doi.org/10.1155/2016/1957612

A. Varympopi, A. Dimopoulou, I. Theologidis et al., “Bactericides based on copper nanoparticles restrain growth of important plant pathogens,” Pathogens, vol. 9, n.o 12, pp. 1-14, 2020. https://doi.org/10.3390/pathogens9121024 DOI: https://doi.org/10.3390/pathogens9121024

H. T. Luong, C. X. Nguyen, B. Thuong et al., “Antibacterial effect of copper nanoparticles produced in a Shewanella -supported non-external circuit bioelectrical system on bacterial plant pathogens,” RSC Adv., vol. 12, n.o 7, pp. 4428-4436, feb. de 2022. https://doi.org/10.1039/D1RA08187J DOI: https://doi.org/10.1039/D1RA08187J

G. Dinda, D. Halder, C. Vázquez-Vázquez, M. A. Lopez-Quintela y A. Mitra, “Green Synthesis of Copper Nanoparticles and Their Use in Biomedical Applications,” J. Surf. Sci. Technol., vol. 31, n.o September, pp. 1-3, 2015.

J. Xiong, Y. Wang, Q. Xue y X. Wu, “Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid,” Green Chemistry, vol. 13, n.o 2011, pp. 900-904, 2011. https://doi.org/10.1039/C0GC00772B DOI: https://doi.org/10.1039/c0gc00772b

S. Kothai y U. R, “Green Synthesis, Characterization of Copper Nanoparticles Derived from Ocimum Sanctum Leaf Extract and their Antimicrobial Activities,” J. chem. chem. sci., vol. 8, n.o 7, pp. 984-992, 2018. http://dx.doi.org/10.29055/jccs/670 DOI: https://doi.org/10.29055/jccs/670

S. Banerjee y D. Chakravorty, “Optical absorption by nanoparticles of Cu2O,” EPL, vol. 52, pp. 468-473, 4 2000. https://doi.org/10.1209/epl/i2000-00461-5 DOI: https://doi.org/10.1209/epl/i2000-00461-5

R. Cuevas, N. Durán, M. C. Diez, G. R. Tortella y O. Rubilar, “Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests,” J. Nanomater., vol. 2015, 2015. https://doi.org/10.1155/2015/789089 DOI: https://doi.org/10.1155/2015/789089

M. Mallik, S. Monia, M. Gupta, A. Ghosh, M. P. Toppo y H. Roy, “Synthesis and characterization of Cu2O nanoparticles,” J. Alloys Compd., vol. 829, 2020. https://doi.org/10.1016/j.jallcom.2020.154623 DOI: https://doi.org/10.1016/j.jallcom.2020.154623

Y. Abboud, T. Saffaj, A. Chagraoui et al., “Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata),” Appl. Nanosci., vol. 4, pp. 571-576, jun. de 2014. https://doi.org/10.1007/s13204-013-0233-x DOI: https://doi.org/10.1007/s13204-013-0233-x

R. M. Silverstein, F. X. Webster y D. J. Kiemle, “Infrared Spectrometry,” en Spectrometric Identification of Organic Compounds, Seventh, NY, USA: John Wiley & Sons, Ltd, 2005, pp. 72-18.

J. M. Jacob, M. S. John, A. Jacob et al., “Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract,” Mater. Res. Express, vol. 6, n.o 4, pp. 45 401, 2019. https://iopscience.iop.org/article/10.1088/2053-1591/aafaed DOI: https://doi.org/10.1088/2053-1591/aafaed

E. A. Mohamed, “Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates,” Heliyon, vol. 6, n.o 1, e03123, ene 2020. https://doi.org/10.1016/j.heliyon.2019.e03123 DOI: https://doi.org/10.1016/j.heliyon.2019.e03123

A. M. Raspolli Galletti, C. Antonetti, M. Marracci, F. Piccinelli y B. Tellini, “Novel microwavesynthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications,” Appl. Surf. Sci., vol. 280, pp. 610-618, sep. 2013. https://doi.org/10.1016/j.apsusc.2013.05.035 DOI: https://doi.org/10.1016/j.apsusc.2013.05.035

F. Kurd, M. Fathi y H. Shekarchizadeh, “Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization,” Int. J. Biol. Macromol., vol. 95, pp. 689-695, 2017. https://doi.org/10.1016/j.ijbiomac.2016.11.116 DOI: https://doi.org/10.1016/j.ijbiomac.2016.11.116

M. Rafique, A. J. Shaikh, R. Rasheed et al., “Aquatic Biodegradation of Methylene Blue by Copper Oxide Nanoparticles Synthesized from Azadirachta indica Leaves Extract,” J. Inorg. Organomet. Polym. Mater., vol. 28, n.o 6, pp. 2455-2462, 2017. https://doi.org/10.1007/s10904-018-0921-9 DOI: https://doi.org/10.1007/s10904-018-0921-9

V. V. T. Padil y M. Cˇ ern´ık, “Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application,” Int. J. Nanomedicine, vol. 8, pp. 889-898, 2013. https://doi.org/10.2147/IJN.S40599 DOI: https://doi.org/10.2147/IJN.S40599

M. Rai, A. P. Ingle, R. Pandit et al., “Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes,” Nanotechnol. Rev., vol. 7, n.o 4, pp. 303-315, ago. 2018. https://doi.org/10.1515/ntrev-2018-0031 DOI: https://doi.org/10.1515/ntrev-2018-0031

How to Cite

APA

Acevedo-León, D., Ossa-Orozco, C. P., and Torres-López, A. M. (2023). Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre. Ingeniería, 28(2), e19067. https://doi.org/10.14483/23448393.19067

ACM

[1]
Acevedo-León, D., Ossa-Orozco, C.P. and Torres-López, A.M. 2023. Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre. Ingeniería. 28, 2 (Apr. 2023), e19067. DOI:https://doi.org/10.14483/23448393.19067.

ACS

(1)
Acevedo-León, D.; Ossa-Orozco, C. P.; Torres-López, A. M. Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre. Ing. 2023, 28, e19067.

ABNT

ACEVEDO-LEÓN, D.; OSSA-OROZCO, C. P.; TORRES-LÓPEZ, A. M. Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre. Ingeniería, [S. l.], v. 28, n. 2, p. e19067, 2023. DOI: 10.14483/23448393.19067. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/19067. Acesso em: 22 sep. 2023.

Chicago

Acevedo-León, Daniela, Claudia Patricia Ossa-Orozco, and Ana María Torres-López. 2023. “Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre”. Ingeniería 28 (2):e19067. https://doi.org/10.14483/23448393.19067.

Harvard

Acevedo-León, D., Ossa-Orozco, C. P. and Torres-López, A. M. (2023) “Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre”, Ingeniería, 28(2), p. e19067. doi: 10.14483/23448393.19067.

IEEE

[1]
D. Acevedo-León, C. P. Ossa-Orozco, and A. M. Torres-López, “Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre”, Ing., vol. 28, no. 2, p. e19067, Apr. 2023.

MLA

Acevedo-León, D., C. P. Ossa-Orozco, and A. M. Torres-López. “Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre”. Ingeniería, vol. 28, no. 2, Apr. 2023, p. e19067, doi:10.14483/23448393.19067.

Turabian

Acevedo-León, Daniela, Claudia Patricia Ossa-Orozco, and Ana María Torres-López. “Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre”. Ingeniería 28, no. 2 (April 29, 2023): e19067. Accessed September 22, 2023. https://revistas.udistrital.edu.co/index.php/reving/article/view/19067.

Vancouver

1.
Acevedo-León D, Ossa-Orozco CP, Torres-López AM. Evaluación de protocolos de síntesis de nanopartículas de cobre u óxidos de cobre. Ing. [Internet]. 2023 Apr. 29 [cited 2023 Sep. 22];28(2):e19067. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/19067

Download Citation

Visitas

71

Dimensions


PlumX


Downloads

Download data is not yet available.
Loading...