DOI:
https://doi.org/10.14483/23464712.18604Publicado:
2022-03-21A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil
The importance of a lipid monolayer model of archaeal membrane to cell biology courses in brazil
La importancia del modelo de monocapa lipídica de la membrana plasmática de archaea para la enseñanza de la biología celular en brasil
Palabras clave:
Higher education, Science education, Biology, Reference material, Teaching aid (en).Palabras clave:
Enseñanza superior, Educación científica, Biología, Material de referencia, Medios de enseñanza (es).Palabras clave:
Ensino Superior, Educação científica, Biologia, Material de referência, Meios de ensino (pt).Descargas
Resumen (pt)
Em Biologia, a célula é considerada a unidade funcional dos seres vivos. Seus constituintes são fundamentalmente material genético, citoplasma e membrana plasmática. Estes três componentes estruturais exercem, dentre outros papéis biológicos, reprodução e manutenção celular, suporte à atividade metabólica e manutenção da barreira físico-química. Portanto, para a compreensão da fisiologia e estrutura celular, é imperativo o estudo dos processos em que esses componentes estão envolvidos, que nos cursos de ensino superior são abordados principalmente nas disciplinas de Biologia Celular e Molecular. Grande parte do conteúdo dessas disciplinas é dedicada ao estudo da estrutura, composição e evolução da membrana plasmática, muitas vezes referida de forma genérica como membrana celular. Em alguns clados em Archaea, um dos três domínios da vida, a membrana celular promove características fisiológicas únicas que permitem o sucesso evolutivo de tais grupos e sua sobrevivência em ambientes inóspitos para outras formas de vida. Nestas células, as membranas plasmáticas diferem estruturalmente das membranas dos domínios Bacteria e Eukaria por se organizarem em monocamada, apresentarem variações no tamanho das cadeias carbônicas alifáticas, nas ligações carbono-carbono e possuírem componentes estruturais exclusivos, como por exemplo os Glicerol-dialkil-glicerol-tetraéteres (GDGTs) e os Arqueóis. Infelizmente, pouca importância é dada ao domínio Archaea nos cursos que são oferecidos a alunos de Ciências Biológicas. O objetivo deste trabalho foi compilar informações sobre a membrana de Archaea e suplementar o atual repertório literário usado para o ensino dos módulos referentes à membrana plasmática nas disciplinas de Biologia Celular e Molecular no Brasil.
Resumen (en)
In Biology, a cell is a functional unit of living organisms. Its constituents are mainly genetic material, cytoplasm, and the cell membrane. These three structural components play, among other biological roles, cell reproduction and maintenance, support of a metabolic activity, and maintenance of the physical-chemical barrier. Therefore, to understand a cell structure and its physiology is imperative to study the processes in which these components are involved. In Brazilian higher education, these topics are mainly addressed in Cellular and Molecular Biology subjects, but most of the contents focused on studying the structure, composition, and evolution of the plasma membrane, often referred to generically as the cell membrane. In some clades in Archaea, one of the three domains of life, the cell membrane promotes unique physiological characteristics that confer the evolutionary success of these groups and their survival in environments inhospitable to other lifeways. In these cells, the plasma membranes differ structurally from the membranes of the Bacteria and Eukarya domains which are organized in monolayers, presenting variations in carbon aliphatic chains size, carbon-carbon bonds, and have exclusive structural components such as Glycerol-dialkyl-glycerol-tetraethers (GDGT’s) and Arqueols. Unfortunately, little importance usually occurs to the Archaea domain in the chairs offered to Biological Sciences students. The objective of this work was to compile information about the Archaea membrane and enrich the current literary repertoire used to teach the modules related to the plasma membrane in the disciplines of Cellular and Molecular Biology in Brazil.
Resumen (es)
En Biología, la célula se considera la unidad funcional de los seres vivos. Sus componentes son fundamentalmente: material genético, citoplasma y membrana plasmática. Estos tres componentes estructurales desempeñan, entre otras funciones biológicas, la reproducción y el mantenimiento celular, el soporte de la actividad metabólica y el mantenimiento de la barrera fisicoquímica. Por tanto, para comprender la fisiología y estructura celular, es imperativo estudiar los procesos en los que están involucrados estos componentes. En el ámbito de la educación superior brasileña, estos temas se tratan principalmente en las disciplinas de Biología Celular y Molecular. Gran parte del contenido de dicha disciplina se dedica al estudio de la estructura, composición y evolución de la membrana plasmática, a menudo denominada de forma genérica como membrana celular. En algunos clados de Archaea, uno de los tres dominios de la vida, la membrana celular promueve características fisiológicas únicas que permiten el éxito evolutivo de dichos grupos y su supervivencia en ambientes inhóspitos para otras formas de vida. En estas células, las membranas plasmáticas se diferencian estructuralmente de las membranas de los dominios Bacteria y Eukaria porque están organizadas en una monocapa, presentan variaciones en el tamaño de las cadenas de carbono alifáticas, en los enlaces carbono-carbono y tienen componentes estructurales únicos, tales como tetraéteres de glicerol-dialquil-glicerol (GDGT) y arqueoles. Desafortunadamente, se le da poca importancia al dominio de Archaea en los cursos que se ofrecen a los estudiantes de Ciencias Biológicas. El objetivo de este trabajo fue recopilar información sobre la membrana de Archaea y complementar el repertorio literario actual utilizado para la enseñanza de módulos relacionados con la membrana plasmática en las disciplinas de Biología Celular y Molecular en Brasil.
Referencias
ALBERTS, B. et al. Biologia Molecular da Célula. 6a ed. Artmed editora, Brasil, 2017.
ALBRECHT, M. P. S.; OLIVEIRA, F. E. Jogo eletrônico para o ensino de biologia celular. ACTIO, v. 5, n. 3, pp. 1-18, 2020.
https://doi.org/10.3895/actio.v5n3.12493
BASEN, M.; et al. Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proceedings of the National Academy of Sciences. v. 111, n. 49, pp. 17618-17623, 2014. https://doi.org/10.1073/pnas.1413789111
https://doi.org/10.1073/pnas.1413789111
PMid:25368184 PMCid:PMC4267397
BOYD, E. S.; et al. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity. Frontiers in Microbiology, v. 4, article 62, 2013. https://doi.org/10.3389/fmicb.2013.00062
https://doi.org/10.3389/fmicb.2013.00062
BUSCHINI, A.; POLI, P.; ROSSI, C. Saccharomyces cerevisiae as an eukaryotic cell model to assess cytotoxicity and genotoxicity of three anticancer anthraquinones. Mutagenesis, v. 18, n. 1, pp. 25-26, 2003. https://doi.org/10.1093/mutage/18.1.25
https://doi.org/10.1093/mutage/18.1.25
PMid:12473732
CARIAS, R. B. V.; et al. Qualidade dos produtos de terapias avançadas: requisitos de células extensamente manipuladas usadas em terapias celulares e em bioengenharia. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia, v. 6(1), pp. 84-95, 2018. https://doi.org/10.22239/2317-269X.01048
https://doi.org/10.22239/2317-269x.01048
CARLILE, M. Prokaryotes and eukaryotes: strategies and successes. Trends in Biochemical Sciences, v. 7(4), pp. 128-130, 1982. https://doi.org/10.1016/0968-0004(82)90199-2
https://doi.org/10.1016/0968-0004(82)90199-2
CHAUDHURI, R. R.; HENDERSON, I. R. The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution, v. 12, n. 2, pp. 214-226, 2012. https://doi.org/10.1016/j.meegid.2012.01.005
https://doi.org/10.1016/j.meegid.2012.01.005
PMid:22266241
CHOQUET, C. G.; et al. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Applied Microbiology and Biotechnology, v. 42, n. 2-3, pp. 375-384, 1994. https://doi.org/10.1007/BF00902745.
https://doi.org/10.1007/BF00902745
PMid:7765779
CLAIR, St. J. W.; LONDON, E. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochimica et Biophysica Acta - Biomembranes, v. 1861, n. 6, pp. 1112-1122, 2019. https://doi.org/10.1016/j.bbamem.2019.03.012
https://doi.org/10.1016/j.bbamem.2019.03.012
PMid:30904407 PMCid:PMC6525066
DE ROSA, M.; GAMBACORTA, A. The lipids of Archaebacteria. Progress in Lipid Research, v. 27(3), pp. 153-175, 1988. https://doi.org/10.1016/0163-7827(88)90011-2.
https://doi.org/10.1016/0163-7827(88)90011-2
GERSHFELD, N. L. Physical chemistry of lipid films at fluid intetrfaces. Annual Review of Physical Chemistry. v. 27, n. 1, pp. 349-368, 1976. https://doi.org/10.1146/annurev.pc.27.100176.002025
https://doi.org/10.1146/annurev.pc.27.100176.002025
GONÇALVES, T. M. Construindo um modelo didático 3D de baixo custo para facilitar a aprendizagem da membrana plasmática no Ensino Médio e Fundamental. Research, Society and Development, v. 10, n.5, e3510514541, 2021. http://dx.doi.org/10.33448/rsd-v10i5.14541
https://doi.org/10.33448/rsd-v10i5.14541
INGÓLFSSON, H. I.; et al. Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, v. 136, n. 41, pp. 14554-14559, 2014. https://doi.org/10.1021/ja507832e
https://doi.org/10.1021/ja507832e
PMid:25229711
INGRAM, L. O. Adaptation of membrane lipids to alcohols. Journal of bacteriology, v. 125, n. 2, pp. 670-678, 1976. https://doi.org/10.1128/jb.125.2.670-678.1976
https://doi.org/10.1128/jb.125.2.670-678.1976
PMid:1107328 PMCid:PMC236128
JAHN, U.; et al. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Archives of microbiology, v. 182, n. 5, pp. 404-413. 2004. https://doi.org/10.1007/s00203-004-0725-x
https://doi.org/10.1007/s00203-004-0725-x
PMid:15492905
JÚNIOR, A. J. V.; GOBARA, S. T. Ensino em modelos como instrumento facilitador da aprendizagem em Biologia Celular. Revista Electrónica de Enseñanza de las Ciencias, v. 15, n. 3, pp. 450-475, 2016.
JUNQUEIRA, L. C.; CARNEIRO, J. Biologia Celular e Molecular. 9a ed. Guanabara Koogan, Brasil, 2012.
KARATHIA, H.; et al. Saccharomyces cerevisiae as a Model Organism: A Comparative Study. PloS One, v. 6, n. 2, pp. e16015, 2011. https://doi.org/10.1371/journal.pone.0016015
https://doi.org/10.1371/journal.pone.0016015
PMid:21311596 PMCid:PMC3032731
KOGA, Y.; MORII, H. Recent Advances in Structural Research on Ether Lipids from Archaea Including Comparative and Physiological Aspects. Bioscience, Biotechnology, and Biochemistry, v. 69, n. 11, pp. 2019-2034, 2005. https://doi.org/10.1271/bbb.69.2019
https://doi.org/10.1271/bbb.69.2019
PMid:16306681
KONINGS, W. N.; et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek, v. 81, n. 1, pp. 61-72, 2002. https://doi.org/10.1023/a:1020573408652
https://doi.org/10.1023/A:1020573408652
PMid:12448706
LANGWORTHY, T. A.; et al. Lipids of Archaebacteria. Zentbl. Bakteriol. Mikrobiol. Hyg. 1 Abt. Orig. C, v. 3, n. 2, pp. 228-244, 1982. https://doi.org/10.1016/S0721-9571(82)80036-7
https://doi.org/10.1016/S0721-9571(82)80036-7
LANGWORTHY, T. A.; POND, J. L. Archaebacterial ether lipids and chemotaxonomy. Systematic and Applied Microbiology v.7, pp. 253-257. 1986. https://doi.org/10.1016/S0723-2020(86)80015-7
https://doi.org/10.1016/S0723-2020(86)80015-7
LANZOTTI, V.; et al. Complex lipids of Desulfurococcus mobilis, a sulfate-reducing archaebacterium. Biochimica et Biophysica Acta. v. 922, pp. 95-102. 1987. https://doi.org/10.1016/0005-2760(87)90142-1
https://doi.org/10.1016/0005-2760(87)90142-1
LEIGH, J. A.; et al. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS microbiology reviews. v. 35, n. 4, pp. 577-608, 2011. https://doi.org/10.1111/j.1574-6976.2011.00265.x
https://doi.org/10.1111/j.1574-6976.2011.00265.x
PMid:21265868
LETUNIC, I.; BORK, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. v. 23, n. 1, pp. 127-128, 2006. https://doi.org/10.1093/bioinformatics/btl529
https://doi.org/10.1093/bioinformatics/btl529
PMid:17050570
LOZANO, E. E.; ADÚRIZ-BRAVO, A.; BAHAMONDE, N. Un Proceso de Modelización de la Membrana Celular en la Formación del Profesorado en Biología en la Universidad. Ciência & Educação (Bauru) [online], v. 26, 2020. https://doi.org/10.1590/1516-731320200027.
https://doi.org/10.1590/1516-731320200027
LUSHCHAK, V. I. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochimica Polonica, v. 53, n. 4, pp. 679-684, 2006. https://doi.org/10.18388/abp.2006_3295
https://doi.org/10.18388/abp.2006_3295
PMid:17063208
MARLOWE, I. T.; et al. Long chain (n-C37-C 39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal, v. 19, n. 3, pp. 203-216, 1984. https://doi.org/10.1080/00071618400650221
https://doi.org/10.1080/00071618400650221
MARTÍNEZ PÉREZ, L. F.; PARGA LOZANO, D. L. La emergencia de las cuestiones sociocientíficas en el enfoque CTSA. Góndola, enseñanza y aprendizaje de las ciencias, v. 8(1), pp. 23-35, 2013. https://doi.org/10.14483/23464712.5021
MCANULTY, M. J.; et al. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnology and bioengineering, v. 114(4), pp. 852-861, 2017. https://doi.org/10.1002/bit.26208
https://doi.org/10.1002/bit.26208
PMid:27800599
MONERAT, C. A. A.; ROCHA, M. B. Análise da percepção de estudantes de graduação da área da saúde sobre o tema Biologia Celular. Revista de Ensino de Bioquímica, v. 13, n. 1, pp. 27-44, 2015. https://doi.org/10.16923/reb.v13i1.532
https://doi.org/10.16923/reb.v13i1.532
MORII, H.; et al. A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochimica et Biophysica Acta, v. 1390, pp. 339-345. 1998. https://doi.org/10.1016/S0005-2760(97)00183-5
https://doi.org/10.1016/S0005-2760(97)00183-5
NICHOLS, P. D.; FRANZMANN, P. D. Unsaturated diether phospholipids in the Antarctic methanogen Methanococcoides burtonii. FEMS Microbiology Letters v. 98, pp. 205-208. 1992. https://doi.org/10.1111/j.1574-6968.1992.tb05515.x
https://doi.org/10.1111/j.1574-6968.1992.tb05515.x
PARDAL, P. C.; SCHIMIGUEL, J.; NIERO, E. L. O. Recurso lúdico em biologia celular utilizado como fixador de conteúdo e como método de avaliação. Experiências em Ensino de Ciências, v.8, n. 3, pp. 129-146, 2013.
PARK, E.; et al. Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S). Biogeosciences, v. 16, n. 11, pp. 2247-2268, 2019. https://doi.org/10.5194/bg-16-2247-2019
https://doi.org/10.5194/bg-16-2247-2019
PERETÓ, J.; LÓPEZ-GARCÍA, P.; MOREIRA, D. Ancestral lipid biosynthesis and early membrane evolution. Trends in Biochemical Sciences, v. 29, n. 9, pp. 469-477, 2004. https://doi.org/10.1016/j.tibs.2004.07.002
https://doi.org/10.1016/j.tibs.2004.07.002
PMid:15337120
PFEIFER, K.; et al. Archaea biotechnology. Biotechnology Advances. v. 47, pp. 107668, 2020. https://doi.org/10.1016/j.biotechadv.2020.107668
https://doi.org/10.1016/j.biotechadv.2020.107668
PMid:33271237
PORTER, J. R. Antony van Leeuwenhoekl: Tercentenary of his discovery of bacteria. Bacteriological reviews. v. 40, n. 2, pp. 260-269, 1976. https://doi.org/10.1128/br.40.2.260-269.1976
https://doi.org/10.1128/br.40.2.260-269.1976
PMid:786250 PMCid:PMC413956
RAY, P. H.; WHITE, D. C.; BROCK, T. D. Effect of temperature on the fatty acid composition of Thermus aquaticus. Journal of Bacteriology. v. 106, n. 1, pp. 25-30. 1971. https://doi.org/10.1128/jb.106.1.25-30.1971
https://doi.org/10.1128/jb.106.1.25-30.1971
PMid:5551637 PMCid:PMC248639
RAYMANN, K.; BROCHIER-ARMANET, C.; GRIBALDO, S. The two-domain tree of life is linked to a new root for the Archaea. Proceedings of the National Academy of Sciences, v. 112, n. 21, pp. 6670-6675, 2015. https://doi.org/10.1073/pnas.1420858112
https://doi.org/10.1073/pnas.1420858112
PMid:25964353 PMCid:PMC4450401
RECHKA, J. A.; MAXWELL, J. R. Characterisation of alkenone temperature indicators in sediments and organisms. Organic Geochemistry, v. 13, n. 4-6, pp. 727-734, 1988. https://doi.org/10.1016/0146-6380(88)90094-0
https://doi.org/10.1016/0146-6380(88)90094-0
REN, Q.; PAULSEN, I. T. Comparative analyses of fundamental differences in membrane transport ccapabilities in prokaryotes andeukaryotes. PLoS Computational Biology, v. 1, n. 3, pp. e27, 2005. https://doi.org/10.1371/journal.pcbi.0010027
https://doi.org/10.1371/journal.pcbi.0010027
PMid:16118665 PMCid:PMC1188273
RESTAINO, O. F.; et al. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. BMC biotechnology. v. 18 n. 1, pp. 1-15, 2018. https://doi.org/10.1186/s12896-018-0427-0
https://doi.org/10.1186/s12896-018-0427-0
PMid:29558934 PMCid:PMC5861644
ROMANTSOV, T.; GUAN, Z.; WOOD, J. M. Cardiolipin and the osmotic stress responses of bacteria. Biochimica et Biophysica Acta, v. 1788, n. 10, pp. 2092-2100, 2009. https://doi.org/10.1016/j.bbamem.2009.06.010
https://doi.org/10.1016/j.bbamem.2009.06.010
PMid:19539601 PMCid:PMC3622477
ROSSEL, P. E.; et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Organic Geochemistry, v. 39, n. 8, pp. 992-999, 2008. https://doi.org/10.1016/j.orggeochem.2008.02.021
https://doi.org/10.1016/j.orggeochem.2008.02.021
SAKO, Y.; et al. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 C. International Journal of Systematic and Evolutionary Microbiology, v. 46 n. 4, pp. 1070-1077. 1996. https://doi.org/10.1099/00207713-46-4-1070
https://doi.org/10.1099/00207713-46-4-1070
PMid:8863437
SCHLEPER, C.; et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. Journal of Bacteriology v. 177, n. 24 pp. 7050-7059. 1995. https://doi.org/10.1128/jb.177.24.7050-7059.1995
https://doi.org/10.1128/jb.177.24.7050-7059.1995
PMid:8522509 PMCid:PMC177581
SCHOUTEN, S.; et al. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences, v. 97, n. 26, pp. 14421-14426, 2000. https://doi.org/10.1073/pnas.97.26.14421
https://doi.org/10.1073/pnas.97.26.14421
PMid:11121044 PMCid:PMC18934
SCHOUTEN, S.; et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Applied and Environmental Microbiology, v. 73, n. 19, pp. 6181-6191. 2007. https://doi.org/10.1128/AEM.00630-07
https://doi.org/10.1128/AEM.00630-07
PMid:17693566 PMCid:PMC2074994
SCHROEDER, R.; LONDON, E.; BROWN, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proceedings of the National Academy of Sciences, v. 91, n. 25, pp. 12130-12134, 1994. https://doi.org/10.1073/pnas.91.25.12130
https://doi.org/10.1073/pnas.91.25.12130
PMid:7991596 PMCid:PMC45390
SEZGIN, E.; et al. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nature Reviews Molecular Cell Biology, v. 18, n. 6, pp. 361-374, 2017. https://doi.org/10.1038/nrm.2017.16
https://doi.org/10.1038/nrm.2017.16
PMid:28356571 PMCid:PMC5500228
SHANMUGARAJ, B. M; RAMALINGAM S. Plant expression platform for the production of recombinant pharmaceutical Proteins. Austin J Biotechnol Bioeng, v. 1, n. 6, pp. 4-7, 2014.
SHERIDAN, P. P.; FREEMAN, K. H.; BRENCHLEY, J. E. Estimated minimal divergence times of the major bacterial and Aarchaeal phyla. Geomicrobiology Journal, v. 20, n. 1, pp. 1-14, 2003. https://doi.org/10.1080/01490450303891
https://doi.org/10.1080/01490450303891
SILIAKUS, M. F.; VAN DER OOST, J.; KENGEN, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles, v. 21, n. 4, pp. 651-670, 2017. https://doi.org/10.1007/s00792-017-0939-x
https://doi.org/10.1007/s00792-017-0939-x
PMid:28508135 PMCid:PMC5487899
SIMONS, K.; IKONEN, E. Functional rafts in cell membranes. Nature, v. 387, n. 6633, pp. 569-572, 1997. https://doi.org/10.1038/42408
PMid:9177342
SIMONS, K.; TOOMRE, D. Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology. v. 1, n. 1, pp. 31-39, 2000. https://doi.org/10.1038/35036052
https://doi.org/10.1038/35036052
PMid:11413487
SINGER, S. J.; NICOLSON, G. L. The fluid mosaic model of the structure of cell membranes. Science. v. 175, n. 4023, pp. 443-461, 1972. https://doi.org/10.1126/science.175.4023.720
https://doi.org/10.1126/science.175.4023.720
PMid:4333397
SOO, V. W.; et al. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microbial Cell Factories, v. 15, n. 1, pp. 1-14, 2016. https://doi.org/10.1186/s12934-015-0397-z
https://doi.org/10.1186/s12934-015-0397-z
PMid:26767617 PMCid:PMC4714516
SOPPA, J. From genomes to function: haloarchaea as model organisms. Microbiology. V. 152, n. 3, pp. 585-590, 2006. https://doi.org/10.1099/mic.0.28504-0
https://doi.org/10.1099/mic.0.28504-0
PMid:16514139
SUGAI, A.; et al. The core lipid composition of the 17 strains of hyperthermophilic archaea, Thermococcales. Journal of Oleo Science v. 53, pp. 41-44. 2004. https://doi.org/10.5650/jos.53.41
https://doi.org/10.5650/jos.53.41
TAHA, M. S.; et al. Valor nutricional dos alimentos: uma situação de estudo à contextualização e interdisciplinaridade no ensino de ciências. Góndola, enseñanza y aprendizaje de las ciencias, v. 12(2), pp. 131-141, 2017. https://doi.org/10.14483/23464712.11442
https://doi.org/10.14483/23464712.11442
TAUBNER, R. S.; et al. Membrane lipid composition and amino acid excretion patterns of Methanothermococcus okinawensis grown in the presence of inhibitors detected in the Enceladian plume. Life, v. 9(4), pp. 85-104, 2019. https://doi.org/10.3390/life9040085
https://doi.org/10.3390/life9040085
PMid:31739502 PMCid:PMC6958431
TAUCEDA, K. C.; NUNES, V; M.; DEL PINO, J. C. A epistemologia/metodologia do aluno pesquisador na educação em ciências. Experiências em Ensino de Ciências, v.6, n. 3, pp. 133-141, 2011.
THURL, S.; SCHAFER, W. Lipids from the sulfur-dependent archaeabacterium Thermoproteus tenax. Biochimica et Biophysica Acta v. 961 pp. 253-261. 1988. https://doi.org/10.1016/0005-2760(88)90120-8
https://doi.org/10.1016/0005-2760(88)90120-8
TIERNEY, J. E. GDGT Thermometry: Lipid tools for reconstructing paleotemperatures. The Paleontological Society Papers. v. 18, pp. 115-132, 2012. https://doi.org/10.1017/s1089332600002588
https://doi.org/10.1017/S1089332600002588
UDA, I.; et al. Variation in molecular species of core lipids from the order Thermoplasmales strains depends on growth temperature. Journal of Oleo Science v. 53, n. 8, pp. 399-404. 2004. https://doi.org/10.5650/jos.53.399
https://doi.org/10.5650/jos.53.399
VALENTINE, D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology, v. 5, n. 4, pp. 316-323, 2007. https://doi.org/10.1038/nrmicro1619.
https://doi.org/10.1038/nrmicro1619
PMid:17334387
VAN DER MEER, M. J. T. et al. Stable carbon isotope fractionations of the hyperthermophilic crenarchaeon Metallosphaera sedula. FEMS Microbiology Letters v. 196, pp. 67-70. 2001. https://doi.org/10.1111/j.1574-6968.2001.tb10542.x
https://doi.org/10.1111/j.1574-6968.2001.tb10542.x
PMid:11257550
VELLAI, T.; VIDA, G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceedings of the Royal Society of London. Series B: Biological Sciences, v. 266, n. 1428, pp. 1571-1577, 1999. https://doi.org/10.1098/rspb.1999.0817
https://doi.org/10.1098/rspb.1999.0817
PMid:10467746 PMCid:PMC1690172
VÖLKL, P. et al. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environmental Microbiology v. 59, pp. 2918-2926. 1993. https://doi.org/10.1128/aem.59.9.2918-2926.1993
https://doi.org/10.1128/aem.59.9.2918-2926.1993
PMid:7692819
VOLKMAN, J. K;. et al. Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi. Physics and Chemistry of the Earth, v. 12, pp. 219-227, 1980. https://doi.org/10.1016/0079-1946(79)90106-X
https://doi.org/10.1016/0079-1946(79)90106-X
WEI, Y.; et al. Lipid and DNA Evidence of Dominance of Planktonic Archaea Preserved in Sediments of the South China Sea: Insight for Application of the TEX 86 Proxy in an Unstable Marine Sediment Environment. Geomicrobiology Journal, v. 31, n. 4, pp. 360-369, 2014. https://doi.org/10.1080/01490451.2013.824051
https://doi.org/10.1080/01490451.2013.824051
WEIJERS, J. W. H.; et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology, v. 8, n. 4, pp. 648-657, 2006a. https://doi.org/10.1111/j.1462-2920.2005.00941.x
https://doi.org/10.1111/j.1462-2920.2005.00941.x
PMid:16584476
WEIJERS, J. W. H.; et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, v. 37, n. 12, pp. 1680-1693, 2006b. https://doi.org/10.1016/j.orggeochem.2006.07.018
https://doi.org/10.1016/j.orggeochem.2006.07.018
WOESE, C. R.; KANDLER, O.; WHEELIS, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, v. 87, n. 12, pp. 4576-4579, 1990. https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
PMid:2112744 PMCid:PMC54159
YAYANOS, A. A.; DIETZ, A. S.; VAN BOXTEL, R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. v. 205, n. 4408, pp. 808-810, 1979. https://doi.org/10.1126/science.205.4408.808
https://doi.org/10.1126/science.205.4408.808
PMid:17814858
ZHANG, C. L.; et al. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Applied and Environmental Microbiology, v. 72, n. 6, pp. 4419-4422, 2006. https://doi.org/10.1128/AEM.00191-06
https://doi.org/10.1128/AEM.00191-06
PMid:16751559 PMCid:PMC1489640
ZINK, K.-G.; et al. Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes. Organic Geochemistry, v. 41, n. 9, pp. 1060-1066, 2010. https://doi.org/10.1016/j.orggeochem.2010.03.004
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2022 Autor y Góndola. Enseñanza y Aprendizaje de las Ciencias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Góndola, Ens Aprend Cienc. es una publicación de acceso abierto, sin cargos económicos para autores ni lectores. La publicación, consulta o descarga de los contenidos de la revista no genera costo alguno para los autores ni los lectores, toda vez que la Universidad Distrital Francisco José de Caldas asume los gastos relacionados con edición, gestión y publicación. Los pares evaluadores no reciben retribución económica alguna por su valiosa contribución. Se entiende el trabajo de todos los actores mencionados anteriormente como un aporte al fortalecimiento y crecimiento de la comunidad investigadora en el campo de la Enseñanza de las Ciencias.
A partir del 01 de diciembre de 2018 los contenidos de la revista se publican bajo los términos de la Licencia Creative Commons Atribución–No comercial–Compartir igual 4.0 Internacional (CC-BY-NC-SA 4.0), bajo la cual otros podrán distribuir, remezclar, retocar, y crear a partir de la obra de modo no comercial, siempre y cuando den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Los titulares de los derechos de autor son los autores y la revista Góndola, Ens Aprend Cienc. Los titulares conservan todos los derechos sin restricciones, respetando los términos de la licencia en cuanto a la consulta, descarga y distribución del material.
Cuando la obra o alguno de sus elementos se halle en el dominio público según la ley vigente aplicable, esta situación no quedará afectada por la licencia.
Asimismo, incentivamos a los autores a depositar sus contribuciones en otros repositorios institucionales y temáticos, con la certeza de que la cultura y el conocimiento es un bien de todos y para todos.