A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil

The importance of a lipid monolayer model of archaeal membrane to cell biology courses in brazil

La importancia del modelo de monocapa lipídica de la membrana plasmática de archaea para la enseñanza de la biología celular en brasil

Autores/as

  • Andrey do Nascimento Vieira Institute for Molecular Evolution, University of Düsseldorf
  • Alice Sampaio Barreto da Rocha Fundação Oswaldo Cruz https://orcid.org/0000-0002-0839-306X
  • Manuel Gustavo Leitão Ribeiro Universidade Federal Fluminense, Brasil

Palabras clave:

Higher education, Science education, Biology, Reference material, Teaching aid (en).

Palabras clave:

Enseñanza superior, Educación científica, Biología, Material de referencia, Medios de enseñanza (es).

Palabras clave:

Ensino Superior, Educação científica, Biologia, Material de referência, Meios de ensino (pt).

Resumen (pt)

Em Biologia, a célula é considerada a unidade funcional dos seres vivos. Seus constituintes são fundamentalmente material genético, citoplasma e membrana plasmática. Estes três componentes estruturais exercem, dentre outros papéis biológicos, reprodução e manutenção celular, suporte à atividade metabólica e manutenção da barreira físico-química. Portanto, para a compreensão da fisiologia e estrutura celular, é imperativo o estudo dos processos em que esses componentes estão envolvidos, que nos cursos de ensino superior são abordados principalmente nas disciplinas de Biologia Celular e Molecular. Grande parte do conteúdo dessas disciplinas é dedicada ao estudo da estrutura, composição e evolução da membrana plasmática, muitas vezes referida de forma genérica como membrana celular. Em alguns clados em Archaea, um dos três domínios da vida, a membrana celular promove características fisiológicas únicas que permitem o sucesso evolutivo de tais grupos e sua sobrevivência em ambientes inóspitos para outras formas de vida. Nestas células, as membranas plasmáticas diferem estruturalmente das membranas dos domínios Bacteria e Eukaria por se organizarem em monocamada, apresentarem variações no tamanho das cadeias carbônicas alifáticas, nas ligações carbono-carbono e possuírem componentes estruturais exclusivos, como por exemplo os Glicerol-dialkil-glicerol-tetraéteres (GDGTs) e os Arqueóis. Infelizmente, pouca importância é dada ao domínio Archaea nos cursos que são oferecidos a alunos de Ciências Biológicas. O objetivo deste trabalho foi compilar informações sobre a membrana de Archaea e suplementar o atual repertório literário usado para o ensino dos módulos referentes à membrana plasmática nas disciplinas de Biologia Celular e Molecular no Brasil.

Resumen (en)

In Biology, a cell is a functional unit of living organisms. Its constituents are mainly genetic material, cytoplasm, and the cell membrane. These three structural components play, among other biological roles, cell reproduction and maintenance, support of a metabolic activity, and maintenance of the physical-chemical barrier. Therefore, to understand a cell structure and its physiology is imperative to study the processes in which these components are involved. In Brazilian higher education, these topics are mainly addressed in Cellular and Molecular Biology subjects, but most of the contents focused on studying the structure, composition, and evolution of the plasma membrane, often referred to generically as the cell membrane. In some clades in Archaea, one of the three domains of life, the cell membrane promotes unique physiological characteristics that confer the evolutionary success of these groups and their survival in environments inhospitable to other lifeways. In these cells, the plasma membranes differ structurally from the membranes of the Bacteria and Eukarya domains which are organized in monolayers, presenting variations in carbon aliphatic chains size, carbon-carbon bonds, and have exclusive structural components such as Glycerol-dialkyl-glycerol-tetraethers (GDGT’s) and Arqueols. Unfortunately, little importance usually occurs to the Archaea domain in the chairs offered to Biological Sciences students. The objective of this work was to compile information about the Archaea membrane and enrich the current literary repertoire used to teach the modules related to the plasma membrane in the disciplines of Cellular and Molecular Biology in Brazil.

Resumen (es)

En Biología, la célula se considera la unidad funcional de los seres vivos. Sus componentes son fundamentalmente: material genético, citoplasma y membrana plasmática. Estos tres componentes estructurales desempeñan, entre otras funciones biológicas, la reproducción y el mantenimiento celular, el soporte de la actividad metabólica y el mantenimiento de la barrera fisicoquímica. Por tanto, para comprender la fisiología y estructura celular, es imperativo estudiar los procesos en los que están involucrados estos componentes. En el ámbito de la educación superior brasileña, estos temas se tratan principalmente en las disciplinas de Biología Celular y Molecular. Gran parte del contenido de dicha disciplina se dedica al estudio de la estructura, composición y evolución de la membrana plasmática, a menudo denominada de forma genérica como membrana celular. En algunos clados de Archaea, uno de los tres dominios de la vida, la membrana celular promueve características fisiológicas únicas que permiten el éxito evolutivo de dichos grupos y su supervivencia en ambientes inhóspitos para otras formas de vida. En estas células, las membranas plasmáticas se diferencian estructuralmente de las membranas de los dominios Bacteria y Eukaria porque están organizadas en una monocapa, presentan variaciones en el tamaño de las cadenas de carbono alifáticas, en los enlaces carbono-carbono y tienen componentes estructurales únicos, tales como tetraéteres de glicerol-dialquil-glicerol (GDGT) y arqueoles. Desafortunadamente, se le da poca importancia al dominio de Archaea en los cursos que se ofrecen a los estudiantes de Ciencias Biológicas. El objetivo de este trabajo fue recopilar información sobre la membrana de Archaea y complementar el repertorio literario actual utilizado para la enseñanza de módulos relacionados con la membrana plasmática en las disciplinas de Biología Celular y Molecular en Brasil.

Biografía del autor/a

Manuel Gustavo Leitão Ribeiro, Universidade Federal Fluminense, Brasil

Es licenciado en Ciencias Biológicas (Genética, en 1999 y Licenciado, en 2002) por la Universidad Federal de Río de Janeiro. Obtuvo una maestría (2002) y un doctorado (2006) en Ciencias Biológicas (Biofísica) en el Instituto de Bifísica Carlos Chagas Filho de la Universidad Federal de Río de Janeiro, tras haber realizado una pasantía de doctorado en el Comissariat à l'Energie Atomique, en Grenoble (Francia) (2003). Hizo una beca postdoctoral en el Instituto de Biofísica Carlos Chagas Filho de la UFRJ (2007 a 2008). Actualmente es profesor adjunto y coordinador de la licenciatura en ciencias biológicas de la Universidad Federal Fluminense. Tiene experiencia en Biofísica, Bioquímica y Epistemología con énfasis en: 1) homeostasis del cobre en levaduras; 2) estudio de los mecanismos colinérgicos involucrados en la enfermedad de Parkinson; 3) investigación en la enseñanza de las ciencias, con el objetivo de identificar los obstáculos epistemológicos que interfieren en el aprendizaje y la construcción de conceptos en Biología. Actualmente también desarrolla estudios encaminados a la elaboración de actividades para la inclusión de estudiantes con discapacidad intelectual y TDAH en las escuelas ordinarias. Es miembro del Grupo Interinstitucional e Interdisciplinario de Estudios en Epistemología (GI2E2). Es miembro colaborador del Curso de Postgrado en Neurociencias y miembro permanente del Curso de Maestría Profesional en Diversidad e Inclusión (UFF).

Referencias

ALBERTS, B. et al. Biologia Molecular da Célula. 6a ed. Artmed editora, Brasil, 2017.

ALBRECHT, M. P. S.; OLIVEIRA, F. E. Jogo eletrônico para o ensino de biologia celular. ACTIO, v. 5, n. 3, pp. 1-18, 2020.

https://doi.org/10.3895/actio.v5n3.12493

BASEN, M.; et al. Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proceedings of the National Academy of Sciences. v. 111, n. 49, pp. 17618-17623, 2014. https://doi.org/10.1073/pnas.1413789111

https://doi.org/10.1073/pnas.1413789111

PMid:25368184 PMCid:PMC4267397

BOYD, E. S.; et al. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity. Frontiers in Microbiology, v. 4, article 62, 2013. https://doi.org/10.3389/fmicb.2013.00062

https://doi.org/10.3389/fmicb.2013.00062

BUSCHINI, A.; POLI, P.; ROSSI, C. Saccharomyces cerevisiae as an eukaryotic cell model to assess cytotoxicity and genotoxicity of three anticancer anthraquinones. Mutagenesis, v. 18, n. 1, pp. 25-26, 2003. https://doi.org/10.1093/mutage/18.1.25

https://doi.org/10.1093/mutage/18.1.25

PMid:12473732

CARIAS, R. B. V.; et al. Qualidade dos produtos de terapias avançadas: requisitos de células extensamente manipuladas usadas em terapias celulares e em bioengenharia. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia, v. 6(1), pp. 84-95, 2018. https://doi.org/10.22239/2317-269X.01048

https://doi.org/10.22239/2317-269x.01048

CARLILE, M. Prokaryotes and eukaryotes: strategies and successes. Trends in Biochemical Sciences, v. 7(4), pp. 128-130, 1982. https://doi.org/10.1016/0968-0004(82)90199-2

https://doi.org/10.1016/0968-0004(82)90199-2

CHAUDHURI, R. R.; HENDERSON, I. R. The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution, v. 12, n. 2, pp. 214-226, 2012. https://doi.org/10.1016/j.meegid.2012.01.005

https://doi.org/10.1016/j.meegid.2012.01.005

PMid:22266241

CHOQUET, C. G.; et al. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Applied Microbiology and Biotechnology, v. 42, n. 2-3, pp. 375-384, 1994. https://doi.org/10.1007/BF00902745.

https://doi.org/10.1007/BF00902745

PMid:7765779

CLAIR, St. J. W.; LONDON, E. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochimica et Biophysica Acta - Biomembranes, v. 1861, n. 6, pp. 1112-1122, 2019. https://doi.org/10.1016/j.bbamem.2019.03.012

https://doi.org/10.1016/j.bbamem.2019.03.012

PMid:30904407 PMCid:PMC6525066

DE ROSA, M.; GAMBACORTA, A. The lipids of Archaebacteria. Progress in Lipid Research, v. 27(3), pp. 153-175, 1988. https://doi.org/10.1016/0163-7827(88)90011-2.

https://doi.org/10.1016/0163-7827(88)90011-2

GERSHFELD, N. L. Physical chemistry of lipid films at fluid intetrfaces. Annual Review of Physical Chemistry. v. 27, n. 1, pp. 349-368, 1976. https://doi.org/10.1146/annurev.pc.27.100176.002025

https://doi.org/10.1146/annurev.pc.27.100176.002025

GONÇALVES, T. M. Construindo um modelo didático 3D de baixo custo para facilitar a aprendizagem da membrana plasmática no Ensino Médio e Fundamental. Research, Society and Development, v. 10, n.5, e3510514541, 2021. http://dx.doi.org/10.33448/rsd-v10i5.14541

https://doi.org/10.33448/rsd-v10i5.14541

INGÓLFSSON, H. I.; et al. Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, v. 136, n. 41, pp. 14554-14559, 2014. https://doi.org/10.1021/ja507832e

https://doi.org/10.1021/ja507832e

PMid:25229711

INGRAM, L. O. Adaptation of membrane lipids to alcohols. Journal of bacteriology, v. 125, n. 2, pp. 670-678, 1976. https://doi.org/10.1128/jb.125.2.670-678.1976

https://doi.org/10.1128/jb.125.2.670-678.1976

PMid:1107328 PMCid:PMC236128

JAHN, U.; et al. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Archives of microbiology, v. 182, n. 5, pp. 404-413. 2004. https://doi.org/10.1007/s00203-004-0725-x

https://doi.org/10.1007/s00203-004-0725-x

PMid:15492905

JÚNIOR, A. J. V.; GOBARA, S. T. Ensino em modelos como instrumento facilitador da aprendizagem em Biologia Celular. Revista Electrónica de Enseñanza de las Ciencias, v. 15, n. 3, pp. 450-475, 2016.

JUNQUEIRA, L. C.; CARNEIRO, J. Biologia Celular e Molecular. 9a ed. Guanabara Koogan, Brasil, 2012.

KARATHIA, H.; et al. Saccharomyces cerevisiae as a Model Organism: A Comparative Study. PloS One, v. 6, n. 2, pp. e16015, 2011. https://doi.org/10.1371/journal.pone.0016015

https://doi.org/10.1371/journal.pone.0016015

PMid:21311596 PMCid:PMC3032731

KOGA, Y.; MORII, H. Recent Advances in Structural Research on Ether Lipids from Archaea Including Comparative and Physiological Aspects. Bioscience, Biotechnology, and Biochemistry, v. 69, n. 11, pp. 2019-2034, 2005. https://doi.org/10.1271/bbb.69.2019

https://doi.org/10.1271/bbb.69.2019

PMid:16306681

KONINGS, W. N.; et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek, v. 81, n. 1, pp. 61-72, 2002. https://doi.org/10.1023/a:1020573408652

https://doi.org/10.1023/A:1020573408652

PMid:12448706

LANGWORTHY, T. A.; et al. Lipids of Archaebacteria. Zentbl. Bakteriol. Mikrobiol. Hyg. 1 Abt. Orig. C, v. 3, n. 2, pp. 228-244, 1982. https://doi.org/10.1016/S0721-9571(82)80036-7

https://doi.org/10.1016/S0721-9571(82)80036-7

LANGWORTHY, T. A.; POND, J. L. Archaebacterial ether lipids and chemotaxonomy. Systematic and Applied Microbiology v.7, pp. 253-257. 1986. https://doi.org/10.1016/S0723-2020(86)80015-7

https://doi.org/10.1016/S0723-2020(86)80015-7

LANZOTTI, V.; et al. Complex lipids of Desulfurococcus mobilis, a sulfate-reducing archaebacterium. Biochimica et Biophysica Acta. v. 922, pp. 95-102. 1987. https://doi.org/10.1016/0005-2760(87)90142-1

https://doi.org/10.1016/0005-2760(87)90142-1

LEIGH, J. A.; et al. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS microbiology reviews. v. 35, n. 4, pp. 577-608, 2011. https://doi.org/10.1111/j.1574-6976.2011.00265.x

https://doi.org/10.1111/j.1574-6976.2011.00265.x

PMid:21265868

LETUNIC, I.; BORK, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. v. 23, n. 1, pp. 127-128, 2006. https://doi.org/10.1093/bioinformatics/btl529

https://doi.org/10.1093/bioinformatics/btl529

PMid:17050570

LOZANO, E. E.; ADÚRIZ-BRAVO, A.; BAHAMONDE, N. Un Proceso de Modelización de la Membrana Celular en la Formación del Profesorado en Biología en la Universidad. Ciência & Educação (Bauru) [online], v. 26, 2020. https://doi.org/10.1590/1516-731320200027.

https://doi.org/10.1590/1516-731320200027

LUSHCHAK, V. I. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochimica Polonica, v. 53, n. 4, pp. 679-684, 2006. https://doi.org/10.18388/abp.2006_3295

https://doi.org/10.18388/abp.2006_3295

PMid:17063208

MARLOWE, I. T.; et al. Long chain (n-C37-C 39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal, v. 19, n. 3, pp. 203-216, 1984. https://doi.org/10.1080/00071618400650221

https://doi.org/10.1080/00071618400650221

MARTÍNEZ PÉREZ, L. F.; PARGA LOZANO, D. L. La emergencia de las cuestiones sociocientíficas en el enfoque CTSA. Góndola, enseñanza y aprendizaje de las ciencias, v. 8(1), pp. 23-35, 2013. https://doi.org/10.14483/23464712.5021

MCANULTY, M. J.; et al. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnology and bioengineering, v. 114(4), pp. 852-861, 2017. https://doi.org/10.1002/bit.26208

https://doi.org/10.1002/bit.26208

PMid:27800599

MONERAT, C. A. A.; ROCHA, M. B. Análise da percepção de estudantes de graduação da área da saúde sobre o tema Biologia Celular. Revista de Ensino de Bioquímica, v. 13, n. 1, pp. 27-44, 2015. https://doi.org/10.16923/reb.v13i1.532

https://doi.org/10.16923/reb.v13i1.532

MORII, H.; et al. A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochimica et Biophysica Acta, v. 1390, pp. 339-345. 1998. https://doi.org/10.1016/S0005-2760(97)00183-5

https://doi.org/10.1016/S0005-2760(97)00183-5

NICHOLS, P. D.; FRANZMANN, P. D. Unsaturated diether phospholipids in the Antarctic methanogen Methanococcoides burtonii. FEMS Microbiology Letters v. 98, pp. 205-208. 1992. https://doi.org/10.1111/j.1574-6968.1992.tb05515.x

https://doi.org/10.1111/j.1574-6968.1992.tb05515.x

PARDAL, P. C.; SCHIMIGUEL, J.; NIERO, E. L. O. Recurso lúdico em biologia celular utilizado como fixador de conteúdo e como método de avaliação. Experiências em Ensino de Ciências, v.8, n. 3, pp. 129-146, 2013.

PARK, E.; et al. Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S). Biogeosciences, v. 16, n. 11, pp. 2247-2268, 2019. https://doi.org/10.5194/bg-16-2247-2019

https://doi.org/10.5194/bg-16-2247-2019

PERETÓ, J.; LÓPEZ-GARCÍA, P.; MOREIRA, D. Ancestral lipid biosynthesis and early membrane evolution. Trends in Biochemical Sciences, v. 29, n. 9, pp. 469-477, 2004. https://doi.org/10.1016/j.tibs.2004.07.002

https://doi.org/10.1016/j.tibs.2004.07.002

PMid:15337120

PFEIFER, K.; et al. Archaea biotechnology. Biotechnology Advances. v. 47, pp. 107668, 2020. https://doi.org/10.1016/j.biotechadv.2020.107668

https://doi.org/10.1016/j.biotechadv.2020.107668

PMid:33271237

PORTER, J. R. Antony van Leeuwenhoekl: Tercentenary of his discovery of bacteria. Bacteriological reviews. v. 40, n. 2, pp. 260-269, 1976. https://doi.org/10.1128/br.40.2.260-269.1976

https://doi.org/10.1128/br.40.2.260-269.1976

PMid:786250 PMCid:PMC413956

RAY, P. H.; WHITE, D. C.; BROCK, T. D. Effect of temperature on the fatty acid composition of Thermus aquaticus. Journal of Bacteriology. v. 106, n. 1, pp. 25-30. 1971. https://doi.org/10.1128/jb.106.1.25-30.1971

https://doi.org/10.1128/jb.106.1.25-30.1971

PMid:5551637 PMCid:PMC248639

RAYMANN, K.; BROCHIER-ARMANET, C.; GRIBALDO, S. The two-domain tree of life is linked to a new root for the Archaea. Proceedings of the National Academy of Sciences, v. 112, n. 21, pp. 6670-6675, 2015. https://doi.org/10.1073/pnas.1420858112

https://doi.org/10.1073/pnas.1420858112

PMid:25964353 PMCid:PMC4450401

RECHKA, J. A.; MAXWELL, J. R. Characterisation of alkenone temperature indicators in sediments and organisms. Organic Geochemistry, v. 13, n. 4-6, pp. 727-734, 1988. https://doi.org/10.1016/0146-6380(88)90094-0

https://doi.org/10.1016/0146-6380(88)90094-0

REN, Q.; PAULSEN, I. T. Comparative analyses of fundamental differences in membrane transport ccapabilities in prokaryotes andeukaryotes. PLoS Computational Biology, v. 1, n. 3, pp. e27, 2005. https://doi.org/10.1371/journal.pcbi.0010027

https://doi.org/10.1371/journal.pcbi.0010027

PMid:16118665 PMCid:PMC1188273

RESTAINO, O. F.; et al. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. BMC biotechnology. v. 18 n. 1, pp. 1-15, 2018. https://doi.org/10.1186/s12896-018-0427-0

https://doi.org/10.1186/s12896-018-0427-0

PMid:29558934 PMCid:PMC5861644

ROMANTSOV, T.; GUAN, Z.; WOOD, J. M. Cardiolipin and the osmotic stress responses of bacteria. Biochimica et Biophysica Acta, v. 1788, n. 10, pp. 2092-2100, 2009. https://doi.org/10.1016/j.bbamem.2009.06.010

https://doi.org/10.1016/j.bbamem.2009.06.010

PMid:19539601 PMCid:PMC3622477

ROSSEL, P. E.; et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Organic Geochemistry, v. 39, n. 8, pp. 992-999, 2008. https://doi.org/10.1016/j.orggeochem.2008.02.021

https://doi.org/10.1016/j.orggeochem.2008.02.021

SAKO, Y.; et al. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 C. International Journal of Systematic and Evolutionary Microbiology, v. 46 n. 4, pp. 1070-1077. 1996. https://doi.org/10.1099/00207713-46-4-1070

https://doi.org/10.1099/00207713-46-4-1070

PMid:8863437

SCHLEPER, C.; et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. Journal of Bacteriology v. 177, n. 24 pp. 7050-7059. 1995. https://doi.org/10.1128/jb.177.24.7050-7059.1995

https://doi.org/10.1128/jb.177.24.7050-7059.1995

PMid:8522509 PMCid:PMC177581

SCHOUTEN, S.; et al. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences, v. 97, n. 26, pp. 14421-14426, 2000. https://doi.org/10.1073/pnas.97.26.14421

https://doi.org/10.1073/pnas.97.26.14421

PMid:11121044 PMCid:PMC18934

SCHOUTEN, S.; et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Applied and Environmental Microbiology, v. 73, n. 19, pp. 6181-6191. 2007. https://doi.org/10.1128/AEM.00630-07

https://doi.org/10.1128/AEM.00630-07

PMid:17693566 PMCid:PMC2074994

SCHROEDER, R.; LONDON, E.; BROWN, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proceedings of the National Academy of Sciences, v. 91, n. 25, pp. 12130-12134, 1994. https://doi.org/10.1073/pnas.91.25.12130

https://doi.org/10.1073/pnas.91.25.12130

PMid:7991596 PMCid:PMC45390

SEZGIN, E.; et al. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nature Reviews Molecular Cell Biology, v. 18, n. 6, pp. 361-374, 2017. https://doi.org/10.1038/nrm.2017.16

https://doi.org/10.1038/nrm.2017.16

PMid:28356571 PMCid:PMC5500228

SHANMUGARAJ, B. M; RAMALINGAM S. Plant expression platform for the production of recombinant pharmaceutical Proteins. Austin J Biotechnol Bioeng, v. 1, n. 6, pp. 4-7, 2014.

SHERIDAN, P. P.; FREEMAN, K. H.; BRENCHLEY, J. E. Estimated minimal divergence times of the major bacterial and Aarchaeal phyla. Geomicrobiology Journal, v. 20, n. 1, pp. 1-14, 2003. https://doi.org/10.1080/01490450303891

https://doi.org/10.1080/01490450303891

SILIAKUS, M. F.; VAN DER OOST, J.; KENGEN, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles, v. 21, n. 4, pp. 651-670, 2017. https://doi.org/10.1007/s00792-017-0939-x

https://doi.org/10.1007/s00792-017-0939-x

PMid:28508135 PMCid:PMC5487899

SIMONS, K.; IKONEN, E. Functional rafts in cell membranes. Nature, v. 387, n. 6633, pp. 569-572, 1997. https://doi.org/10.1038/42408

https://doi.org/10.1038/42408

PMid:9177342

SIMONS, K.; TOOMRE, D. Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology. v. 1, n. 1, pp. 31-39, 2000. https://doi.org/10.1038/35036052

https://doi.org/10.1038/35036052

PMid:11413487

SINGER, S. J.; NICOLSON, G. L. The fluid mosaic model of the structure of cell membranes. Science. v. 175, n. 4023, pp. 443-461, 1972. https://doi.org/10.1126/science.175.4023.720

https://doi.org/10.1126/science.175.4023.720

PMid:4333397

SOO, V. W.; et al. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microbial Cell Factories, v. 15, n. 1, pp. 1-14, 2016. https://doi.org/10.1186/s12934-015-0397-z

https://doi.org/10.1186/s12934-015-0397-z

PMid:26767617 PMCid:PMC4714516

SOPPA, J. From genomes to function: haloarchaea as model organisms. Microbiology. V. 152, n. 3, pp. 585-590, 2006. https://doi.org/10.1099/mic.0.28504-0

https://doi.org/10.1099/mic.0.28504-0

PMid:16514139

SUGAI, A.; et al. The core lipid composition of the 17 strains of hyperthermophilic archaea, Thermococcales. Journal of Oleo Science v. 53, pp. 41-44. 2004. https://doi.org/10.5650/jos.53.41

https://doi.org/10.5650/jos.53.41

TAHA, M. S.; et al. Valor nutricional dos alimentos: uma situação de estudo à contextualização e interdisciplinaridade no ensino de ciências. Góndola, enseñanza y aprendizaje de las ciencias, v. 12(2), pp. 131-141, 2017. https://doi.org/10.14483/23464712.11442

https://doi.org/10.14483/23464712.11442

TAUBNER, R. S.; et al. Membrane lipid composition and amino acid excretion patterns of Methanothermococcus okinawensis grown in the presence of inhibitors detected in the Enceladian plume. Life, v. 9(4), pp. 85-104, 2019. https://doi.org/10.3390/life9040085

https://doi.org/10.3390/life9040085

PMid:31739502 PMCid:PMC6958431

TAUCEDA, K. C.; NUNES, V; M.; DEL PINO, J. C. A epistemologia/metodologia do aluno pesquisador na educação em ciências. Experiências em Ensino de Ciências, v.6, n. 3, pp. 133-141, 2011.

THURL, S.; SCHAFER, W. Lipids from the sulfur-dependent archaeabacterium Thermoproteus tenax. Biochimica et Biophysica Acta v. 961 pp. 253-261. 1988. https://doi.org/10.1016/0005-2760(88)90120-8

https://doi.org/10.1016/0005-2760(88)90120-8

TIERNEY, J. E. GDGT Thermometry: Lipid tools for reconstructing paleotemperatures. The Paleontological Society Papers. v. 18, pp. 115-132, 2012. https://doi.org/10.1017/s1089332600002588

https://doi.org/10.1017/S1089332600002588

UDA, I.; et al. Variation in molecular species of core lipids from the order Thermoplasmales strains depends on growth temperature. Journal of Oleo Science v. 53, n. 8, pp. 399-404. 2004. https://doi.org/10.5650/jos.53.399

https://doi.org/10.5650/jos.53.399

VALENTINE, D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology, v. 5, n. 4, pp. 316-323, 2007. https://doi.org/10.1038/nrmicro1619.

https://doi.org/10.1038/nrmicro1619

PMid:17334387

VAN DER MEER, M. J. T. et al. Stable carbon isotope fractionations of the hyperthermophilic crenarchaeon Metallosphaera sedula. FEMS Microbiology Letters v. 196, pp. 67-70. 2001. https://doi.org/10.1111/j.1574-6968.2001.tb10542.x

https://doi.org/10.1111/j.1574-6968.2001.tb10542.x

PMid:11257550

VELLAI, T.; VIDA, G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceedings of the Royal Society of London. Series B: Biological Sciences, v. 266, n. 1428, pp. 1571-1577, 1999. https://doi.org/10.1098/rspb.1999.0817

https://doi.org/10.1098/rspb.1999.0817

PMid:10467746 PMCid:PMC1690172

VÖLKL, P. et al. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environmental Microbiology v. 59, pp. 2918-2926. 1993. https://doi.org/10.1128/aem.59.9.2918-2926.1993

https://doi.org/10.1128/aem.59.9.2918-2926.1993

PMid:7692819

VOLKMAN, J. K;. et al. Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi. Physics and Chemistry of the Earth, v. 12, pp. 219-227, 1980. https://doi.org/10.1016/0079-1946(79)90106-X

https://doi.org/10.1016/0079-1946(79)90106-X

WEI, Y.; et al. Lipid and DNA Evidence of Dominance of Planktonic Archaea Preserved in Sediments of the South China Sea: Insight for Application of the TEX 86 Proxy in an Unstable Marine Sediment Environment. Geomicrobiology Journal, v. 31, n. 4, pp. 360-369, 2014. https://doi.org/10.1080/01490451.2013.824051

https://doi.org/10.1080/01490451.2013.824051

WEIJERS, J. W. H.; et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology, v. 8, n. 4, pp. 648-657, 2006a. https://doi.org/10.1111/j.1462-2920.2005.00941.x

https://doi.org/10.1111/j.1462-2920.2005.00941.x

PMid:16584476

WEIJERS, J. W. H.; et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, v. 37, n. 12, pp. 1680-1693, 2006b. https://doi.org/10.1016/j.orggeochem.2006.07.018

https://doi.org/10.1016/j.orggeochem.2006.07.018

WOESE, C. R.; KANDLER, O.; WHEELIS, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, v. 87, n. 12, pp. 4576-4579, 1990. https://doi.org/10.1073/pnas.87.12.4576

https://doi.org/10.1073/pnas.87.12.4576

PMid:2112744 PMCid:PMC54159

YAYANOS, A. A.; DIETZ, A. S.; VAN BOXTEL, R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. v. 205, n. 4408, pp. 808-810, 1979. https://doi.org/10.1126/science.205.4408.808

https://doi.org/10.1126/science.205.4408.808

PMid:17814858

ZHANG, C. L.; et al. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Applied and Environmental Microbiology, v. 72, n. 6, pp. 4419-4422, 2006. https://doi.org/10.1128/AEM.00191-06

https://doi.org/10.1128/AEM.00191-06

PMid:16751559 PMCid:PMC1489640

ZINK, K.-G.; et al. Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes. Organic Geochemistry, v. 41, n. 9, pp. 1060-1066, 2010. https://doi.org/10.1016/j.orggeochem.2010.03.004

https://doi.org/10.1016/j.orggeochem.2010.03.004

Cómo citar

APA

Vieira, A. do N., Rocha , A. S. B. da ., y Ribeiro, M. G. L. (2022). A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil. Góndola, Enseñanza y Aprendizaje de las Ciencias, 17(1), 74–89. https://doi.org/10.14483/23464712.18604

ACM

[1]
Vieira, A. do N. et al. 2022. A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil. Góndola, Enseñanza y Aprendizaje de las Ciencias. 17, 1 (mar. 2022), 74–89. DOI:https://doi.org/10.14483/23464712.18604.

ACS

(1)
Vieira, A. do N.; Rocha , A. S. B. da .; Ribeiro, M. G. L. A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil. Góndola Enseñ. Aprendiz. Cienc. 2022, 17, 74-89.

ABNT

VIEIRA, Andrey do Nascimento; ROCHA , Alice Sampaio Barreto da; RIBEIRO, Manuel Gustavo Leitão. A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil. Góndola, Enseñanza y Aprendizaje de las Ciencias, [S. l.], v. 17, n. 1, p. 74–89, 2022. DOI: 10.14483/23464712.18604. Disponível em: https://revistas.udistrital.edu.co/index.php/GDLA/article/view/18604. Acesso em: 11 ene. 2025.

Chicago

Vieira, Andrey do Nascimento, Alice Sampaio Barreto da Rocha, y Manuel Gustavo Leitão Ribeiro. 2022. «A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil». Góndola, Enseñanza y Aprendizaje de las Ciencias 17 (1):74-89. https://doi.org/10.14483/23464712.18604.

Harvard

Vieira, A. do N., Rocha , A. S. B. da . y Ribeiro, M. G. L. (2022) «A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil», Góndola, Enseñanza y Aprendizaje de las Ciencias, 17(1), pp. 74–89. doi: 10.14483/23464712.18604.

IEEE

[1]
A. do N. Vieira, A. S. B. da . Rocha, y M. G. L. Ribeiro, «A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil», Góndola Enseñ. Aprendiz. Cienc., vol. 17, n.º 1, pp. 74–89, mar. 2022.

MLA

Vieira, Andrey do Nascimento, et al. «A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil». Góndola, Enseñanza y Aprendizaje de las Ciencias, vol. 17, n.º 1, marzo de 2022, pp. 74-89, doi:10.14483/23464712.18604.

Turabian

Vieira, Andrey do Nascimento, Alice Sampaio Barreto da Rocha, y Manuel Gustavo Leitão Ribeiro. «A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil». Góndola, Enseñanza y Aprendizaje de las Ciencias 17, no. 1 (marzo 21, 2022): 74–89. Accedido enero 11, 2025. https://revistas.udistrital.edu.co/index.php/GDLA/article/view/18604.

Vancouver

1.
Vieira A do N, Rocha ASB da, Ribeiro MGL. A importância do modelo de monocamada lipídica da membrana plasmática de archaea para o ensino de biologia celular no brasil. Góndola Enseñ. Aprendiz. Cienc. [Internet]. 21 de marzo de 2022 [citado 11 de enero de 2025];17(1):74-89. Disponible en: https://revistas.udistrital.edu.co/index.php/GDLA/article/view/18604

Descargar cita

Visitas

1503

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 39 40 41 42 43 44 45 46 47 48 > >> 

También puede {advancedSearchLink} para este artículo.

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
2.4 promedio

##plugins.generic.pfl.reviewerProfiles##  N/D

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
N/D
32% con financiadores
##plugins.generic.pfl.competingInterests## 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
Artículos aceptados: 64%
33% aceptado
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

Indexado: {$indexList}

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
Universidad Distrital Francisco José de Caldas
Loading...