What students can learn from Fibonacci´s error in solving “The lion in the pit” problem

Lo que pueden aprender los estudiantes a partir del error de Fibonacci al resolver el problema “El león en el pozo”

O que os alunos podem aprender com o erro de Fibonacci ao resolver o problema “O leão no poco”

Palabras clave: Fibonacci’s error, using history of mathematics in classroom, learning from errors, problem-solving (en_US)
Palabras clave: el error de Fibonacci, uso de la historia de las matemáticas en las aulas, aprendizaje a partir de errores, resolución de problemas (es_ES)
Palabras clave: o erro de Fibonacci, uso da história da matemática em sala de aula, aprendendo com os erros, solução de problemas (pt_BR)

Resumen (en_US)

This initial study presents the results of the classroom implementation of a learning sequence derived from Fibonacci’s error in solving ‘The lion in the pit’ problem. The study was carried out with 35 physics students in a general first-semester course ‘Development of complex-thinking skills’. The learning sequence was implemented as a paper-and-pencil activity in personal and group modes. The most important results are the following: (a) Students were able to provide an acceptable procedure about how Fibonacci might get the wrong answer, (b) students can argue why that answer is wrong, (c) some students’ solutions presented good conceptual and procedural clarity, frequently missed in historic literature, and (d) students grasped the importance of knowing about errors made by famous mathematicians in two connected aspects: mathematics is a human activity prone to errors and, consequently, fear of errors shouldn’t be an obstacle in learning of school mathematics.

Resumen (es_ES)

Este estudio presenta los resultados de la implementación en el aula de una secuencia de aprendizaje derivada del error de Fibonacci al resolver el problema "El león en el pozo". El estudio se realizó con 35 estudiantes de física en un curso general de primer semestre titulado "Desarrollo de habilidades de pensamiento complejo". La secuencia de aprendizaje se implementó como una actividad de lápiz y papel en modos personales y grupales. Los resultados más importantes son los siguientes: (a) Los estudiantes pudieron proporcionar un procedimiento aceptable sobre cómo Fibonacci podría obtener la respuesta incorrecta, (b) los estudiantes pueden argumentar por qué esa respuesta es incorrecta, (c) las soluciones de algunos estudiantes presentaron un buen concepto y claridad del procedimiento, frecuentemente omitida en la literatura histórica, y (d) los estudiantes comprendieron la importancia de conocer los errores cometidos por matemáticos famosos en dos aspectos relacionados: las matemáticas son una actividad humana propensa a errores y, en consecuencia, el miedo a los errores no debe ser un obstáculo para el aprendizaje de las matemáticas escolares.

Resumen (pt_BR)

Este estudo apresenta os resultados da implementação em sala de aula de uma sequência de aprendizado derivada do erro de Fibonacci na resolução do problema "O leão no poço". O estudo foi realizado com 35 estudantes de física numa disciplina geral do primeiro semestre nomeada "Desenvolvimento de habilidades complexas de pensamento". A sequência de aprendizado foi implementada como uma atividade de lápis e papel nos modos pessoal e coletivo. Os resultados mais importantes são os seguintes: (a) Os alunos foram capazes de fornecer um procedimento aceitável sobre como Fibonacci poderia chegar na resposta errada; (b) os alunos podem argumentar por que essa resposta está errada; (c) as soluções de alguns alunos apresentam um bom conceito e clareza do procedimento, freqüentemente omitido na literatura histórica; e (d) os alunos entenderam a importância de conhecer os erros cometidos por matemáticos famosos em dois aspectos relacionados: a matemática é uma atividade humana propensa a erros e, consequentemente, o medo de erros não deve ser um obstáculo para o aprendizado da matemática na escola.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Josip Slisko, Benemérita Universidad Autónoma de Puebla, México

Ph.D. in philosophy of physics and is a full professor of the Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, México. He is member of the National System of Researchers (level II). He is interested in students’ construction of explanatory and predictive models of physical phenomena, and their struggles to overcome ‘fast thinking’ in solving mathematical puzzles. Since 1993, he has been organizing the international workshop ‘New Trends in Physics Teaching’.

Referencias

Arem, C. A. (2010). Conquering math anxiety. A self-help workbook. Third edition. Belmont, CA: Brooks/Cole

Bauer, J. & Harteis, C. (editores). (2012). Human Fallibility: The Ambiguity of Errors for Work and Learning. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3941-5

Boaler, J. (2019). Limitless Mind. Learn, lead, and live without barriers. New York: HarperOne.

Booth, J. L., McGinn, K. M., Barbieri, C., Begolli, K. N., Chang, B., Miller-Cotto, D., Young, L. K. & Davenport, J. L. (2017). Evidence for cognitive science principles that impact learning in mathematics. In D. C. Geary, D. B. Berch, R. Ochsendof & K. M. Koepke (editors), Acquisition of complex arithmetic skills and higher-order mathematics concepts (pp. 297-325). Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-805086-6.00013-8

Chang, H. (2015). Analysis on Using the History of Mathematics in Chinese Mathematics Textbooks. Journal for History of Mathematics, 28(1), 15-29. https://doi.org/10.14477/jhm.2015.28.1.015

Clark, K. M., Kjeldsen, T. H., Schorcht, S., & Tzanakis, C. (editors) (2018). Mathematics, Education and History. Towards a harmonious partnership. ICME-13 monographs. Cham: Springer. https://doi.org/10.1007/978-3-319-73924-3

Deak, J. (2010). Your fantastic elastic brain. Stretch it, shape it. Illustrated by Sarah Ackerley. Belvedere, CA: Little Pickle Press.

Dekker, S. (2014). The Field Guide to Understanding "Human Error". Third Edition. Farnham, UK: Ashgate Publishing Company.

Dell'Abbaco, P. (1964). Tratatto d'Aritmetica. Secondo la lezione del Magliabechiano XI, 86 de la Biblioteca Nazionale di Firenze. A cura e con introduzione di Gino Arrighi. Pisa: Domus Galileana.

Deschauer, S. (2013). Das zweite Rechenbuch von Adam Ries: eine moderne Textfassung mit Kommentar und metrologischem Anhang und einer Einführung in Leben und Werk des Rechenmeisters. Berlin: Springer-Verlag.

Fauvel, J. (1991). Using History in Mathematics Education. For the Learning of Mathematics, 11(2), 3-6.

Fauvel, J. & Van Maanen, J. (editors) (2002). History in Mathematics Education. The ICMI Study. New York: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47220-1

Gil, P. & Martinho, M. H. (2016). The role of history of mathematics in fostering argumentation: Two towers, two birds and a fountain. In CERME 9 - Ninth Congress of the European Society for Research in Mathematics Education, Charles University in Prague, Faculty of Education

ERME, Feb 2015, Prague, Czech Republic. pp.1817-1824.

Høyrup, J. (2007). Jacopo da Firenze's Tractatus Algorismi and Early Italian Abbacus Culture. Basel: Birkhäuser https://doi.org/10.1007/978-3-7643-8391-6

Jankvist, U. T. (2009). A categorization of the "whys" and "hows" of using history in mathematics education. Educational studies in Mathematics, 71(3), 235-261. https://doi.org/10.1007/s10649-008-9174-9

Ju, M. K., Moon, J. E., & Song, R. J. (2016). History of mathematics in Korean mathematics textbooks: Implication for using ethnomathematics in culturally diverse school. International Journal of Science and Mathematics Education, 14(7), 1321-1338. https://doi.org/10.1007/s10763-015-9647-0

Juárez Ramírez, M. A., Hernández Rebollar, L. A. & Slisko, J. (2014). Fibonacci's motion problem "Two travellers": The solutions given by junior high-school students who were trained for Mathematical Olympiad. Latin American Journal of Physics Education, 8(3), 390-396.

Katz, V. J. (1986). Using history in teaching mathematics. For the learning of mathematics, 6(3), 13-19.

Katz, V. (editor). (2000). Using History to Teach Mathematics. An International Perspective. Washington, D.C.: The Mathematical Association of America.

Katz, V. J. (2009). A History of Mathematics. An Introduction. Third Edition. Boston: Addison-Wesley.

Kletz, T. (2001). An engineer's view of human error. Third edition. Rugby, UK: Institution of Chemical Engineers.

Lighter, J. (2000). Mathematicians are human too. Mathematics Teacher, 93(8), 696-699.

Liu, P. H. (2003). Do teachers need to incorporate the history of mathematics in their teaching? Mathematics Teacher, 96(6), 416-421.

Marshall, G. L., & Rich, B. S. (2000). The role of history in a mathematics class. The Mathematics Teacher, 93(8), 704-706.

Matteucci, M. C., Soncini, A., & Ciani, A. (2019). From failure to success: The potential beneficial role of error. In A. M. Columbus (editor), Advances in Psychology Research. Volume 137 (pp.111 - 141). New York: NOVA Science Publishers.

Metcalfe, J. (2017). Learning from Errors. Annual Review of Psychology, 68, 465-489. https://doi.org/10.1146/annurev-psych-010416-044022

Moyon, M. (2019). Teaching Mathematics and Algorithmics with Recreational Problems: The Liber Abaci of Fibonacci, In É. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad & C. Tzanakis (editors), Proceedings of the Eighth European Summer University on History and Epistemology in mathematics Education (ESU-8) (Skriftserie 2019, nr 11). Oslo: Oslo Metropolitan University.

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103(2), 241-263. https://doi.org/10.1037/0033-295X.103.2.241

Reason, J. (1990). Human Error. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139062367

Park, J., & Jang, D. (2015). Study on Criticism and Alternative on the History of Mathematics Described in the Secondary School Mathematics Textbooks. Communications of Mathematical Education, 29(2), 157-196. https://doi.org/10.7468/jksmee.2015.29.2.157

Petković, M. S. (2009). Famous Puzzles of Great Mathematicians. Providence: American Mathematical Society. https://doi.org/10.1090/mbk/063

Radford, L., Furinghetti, F. & Hausberger, T. (editors), Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics. Montpellier: IREM de Montpellier.

Sanford, V. (1951). The problem of the lion in the well. The Mathematics Teacher, 44(3), 196-197.

Sanford, V. (1958). A Short History of Mathematics. Cambridge, MA: The Riverside Press.

Sanford, V. (1972). The History and Significance of Certain Standard Problems in Algebra. New Work: AMS Press. This is a reprint edition of original edition published in d1927 by College Press, New York.

Schorcht, S. (2018). History of Mathematics in German Mathematics Textbooks. In K. M. Clark, T. H. Kjeldsen, S. Schorcht & C. Tzanakis (editors), Mathematics, Education and History (pp. 143-162). Springer, Cham. https://doi.org/10.1007/978-3-319-73924-3_8

Sigler, L. E. (2002). Fibonacci's Liber abaci: a translation into modern English of Leonardo Pisano's Book of calculation. New York: Springer. https://doi.org/10.1007/978-1-4613-0079-3

Siu, M.-K. (2006). No, I don't use history of mathematics in my class: Why? In F. Furinghetti, S. Kaijser, & C. Tzanakis (editors.), Proceedings HPM 2004 & ESU 4 (Rev. ed., pp. 368-382). Uppsala: University of Uppsala.

Slisko, J. (2017). Self-Regulated Learning in A General University Course: Design of Learning Tasks, Their Implementation and Measured Cognitive Effects. Journal of European Education, 7(2), 12-24.

Strauch, B. (2017). Investigating Human Error: Incidents, Accidents, and Complex Systems. Second Edition. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781315589749

Steuer, G. & Dresel, M. (2015). A constructive error climate as an element of effective learning environments. Psychological Test and Assessment Modeling, 57(2), 262-275.

Sullivan, M. M., & Panasuk, R. M. (1997). Fibonacci numbers and an area puzzle: Connecting geometry and algebra in the mathematics classroom. School Science and Mathematics, 97(3), 132-138. https://doi.org/10.1111/j.1949-8594.1997.tb17356.x

Swetz, F. J. (1984). Seeking relevance? Try the history of mathematics. The Mathematics Teacher, 77(1), 54-47.

Swetz, F. J. (1989). Using Problems from the History of Mathematics in Classroom. The Mathematics Teacher, 82(5), 370-377.

Swetz, F. J. (2012). Mathematical expeditions: Exploring word problems across the ages. Baltimore: John Hopkins University Press.

Taskin, D., Cemalettin Yildiz, C., Oben Kanbolat, O. & Baki, A. (2013). Reflections of Problem Solving Environment Based on Group Work: Example of Fibonacci Problem. Mediterranean Journal of Educational Research, 14a, 170-175

Taylor, J. R. (2016). Human Error in Process Plant Design and Opperation: A Practitioner's Guide. Boca Raton, FL: CRC Press. https://doi.org/10.1201/b19075

Woods, D. D., Dekker, S., Cook, R. & Johannesen, L. (2010). Behind Human Error. Second Edition. UK: Ashgate Publishing Company.

Wells, D. (2012). Games and mathematics. Subtle connections. New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139175838

Cómo citar
Slisko, J. (2020). Lo que pueden aprender los estudiantes a partir del error de Fibonacci al resolver el problema “El león en el pozo”. Góndola, Enseñanza Y Aprendizaje De Las Ciencias (Bogotá, Colombia), 15(2). https://doi.org/10.14483/23464712.16041
Sección
ARTÍCULOS